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PREFACE

e

; This document contains a set of papers presented at the Workshop on

: Numerical Grid Generation Techniques for Partial Differential Equations held

i at Langley Research Center October 6-7, 1980. The workshop was organized to

L assess the "state of the art" in grid generation and to assemble the individuals
most involved with the technology to exchange ideas and establish prospects

for the advancement of the technology.

The workshop was divided into three primary categories: classical tech-
niques {complex variables); differential-systems techniques; and algebraic
techniques. Intermixed in these categories were papers on adaptive grid
generation and the analysis of errors caused by grids in the solution of par-
tial differential equations. Herein, the three invited papers are presented
o first and are followed by the other papers in alphabetical order according
to the first author's name.

It is apparent from the papers that two-dimensional grid generation
is highly advanced. Complex-variable techniques, differential-systems tech-
niques, and algebraic techniques are demonstrated to be viable for a wide
variety of two-dimensional problems with complex boundaries and topologies.
In some cases, associated computer programs are available for general

distribution.

Progress is being made in the areas of adaptive grid generation and the

- analysis of how grids affect the solution of partial differential equations.

~ However, only relatively simple problems have been considered thus far, and
further work needs to be done in this area.

Several papers concerning three-dimensional grid generation were pre-
sented. However, the present "state of the art" for this area is highly
restrictive. The construction of arbitrary three-dimensional grids needs to be
done prior to the solution of many partial differential equation systems of
practical interest, and considerably more work needs to be done in this area.
Use of trade names or names of manufacturers in this report does not constitute
an official endorsement of such products or manufacturers, either expressed or
implied, by the National Aeronautics and Space Administration.

Robert E. Smith
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GRID GENERATION USING CLASSICAL TECHNIQUES

Gino Moretti

Polytechnic Institute of New York
Farmingdale, N. Y. 11735

1. Historical

Conformal mapping has been used as a tool for solving
problems in fluid mechanics and electromagnetism for more than
one hundred years. Riemann's (somewhat incomplete) proof of the
possibility of mapping closed contours on circles dates from 1850
[V]. Schwarz introduced what is now known as the Schwarz-
Christoffel transformation in 1869 [2]. 1In the same year, Kir-
chhoff and Helmholtz used conformal mapping to solve classical
problems of flows with free surfaces [3]. The importance of con-
formal mapping in fluid mechanics in the second half of the
nineteenth century and the first quarter of the present one stems

' N from the well-known property of invariance of the Laplace equa-
e tion through conformal mapping; the mapping itself is, indeed,

defined by a Laplace equation. Since the theory of images allows
any incompressible, potential flow defined by given singularities
to be determined in the presence of a circle or a straight line,
the analogous problem in the presence of an arbitrarily given
contour is reduced to the problem of mapping the contour onto a
circle or a straight line. 1In so doing, the problem of determin-
ing the analytic function representing the complex flow potential
is split into two parts. One consists of finding the potential
for the circle, and that is easy. The other still requires the
determination of an analytic function to define the mapping,
which is as difficult a task as the original problem [4, page
771. Nevertheless, it is much more appealing to people who have
a visually oriented mind, and it can be subdivided in a number of
successive steps, each one of which is easy to understand
geometrically.

The Joukowski mapping,

Z:c-{--g- (1)




discovered in 1910 [5], is extremely simple and easy to handle.
Using a circle as the basic contour in the ¢z-plane, it can gen-
erate a two-parameter family of cusped profiles and a three-
parameter family of smooth contours ranging from familiar el-
lipses to peanut-shaped figures (Fig. 1). Despite their poor
aerodynamical properties, the Joukowski profiles played a crucial
role in the understanding of the mechanism of 1ift and, conse-
quently, 1in the establishment of the theory of flight as a sci-
ence, In creating his profiles, Joukowski introduced an idea
which turned out to be extremely rich in consequences: that is,
that a shifting of the center of the circle is sufficient to pro-
duce an airfoil having either camber or thickness or a combina-
tion of both.

Another major contribution dates from 1918 when von
Kérm&n and Trefftz [6] observed that, if (1) is recast in the
form:

z -2 _ (=12
Z + 2 (; + 1) (2)

it can be interpreted as a combination of two bilinear mappings
and a power. If § 1s wused instead of 2 in (2), the K4rmén-
Trefftz mapping results:

2z -6 _ (= 1.8

zvs " a1 (3)
which, for §=2-¢/w, produces an airfoil with a finite internal
angle, ¢, at the trailing edge. The property of a power,

z = ¢° 4)

to eliminate sharp corners, was known and had been applied since
the times of Schwarz and Christoffel, but the importance of its
application in (3) should not be underestimated.

The role played by the exponential (and, conversely, the
logarithm) and by all functions directly related to it (direct
and inverse trigonometric and hyperbolic functions) in generating
infinite cascades can be traced back to K8nig, 1922 I[7].
Transformations of this kind, for example,

z = elB log &K & e~ 18 log kg-1 (5)
L+K Kg+1
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have essential singularities at infinity. Therefore, the 1image
of the physical point at infinity in the plane of the circle is
generally a pair of spiral-vortices at a finite distance, a
geometrical property related to the ability of a cascade to de-
flect the flow. |

Finally, in 1933 Ferrari found the basic mapping for bi-
planes. He showed that a doubly periodic function was needed,
that is, an elliptic function. His paper [8] is the first appli-
cation of elliptic functions to wing theory. [81].

Important as these basic mappings were, they did not
solve the problem of mapping an arbitrarily given contour onto a
circle, They generate a closed contour without sharp corners
which, 1in a favorable case, may look like a quasi-circular con-
tour which reminds one of a potato (the word "potato" has actual-
ly been used occasionally in the literature to designate such
figures and, although not defined in mathematical terms, seems to
be as acceptable as "quasi-circle")., The technique for the map-
ping of the quasi-circle onto a circle, proposed by Theodorsen in
1931 [9], actually brought conformal mapping from the speculative
level down to practical levels of aeronautical engineering. Its
basic 1idea is indeed extremely simple; if the center of the cir-
cle and the centroid of the quasi-circle are located in the ori-
gins of their respective planes, and some scaling is used to make
the areas of the two figures coincide, then the mapping can be
expressed in the form:

Z = ef(c) (6)

where z:re1¢, ;:ele and the modulus of f 1is small. Therefore,

two equations follow:
lnr = A(8) , ¢-6 = B(e) ' (7)

if f = A + iB. On the circle, A and B are conjugate Fourier
series., If 1n r were known as a function of &, A could be deter-
mined by expanding 1ln r into a Fourier series, and B would follow
automatically. Since 1n r is known, instead, as a function of &,
iterations are necessary to make the two equations compatible.
Alternatively, values of ¢-6 can be obtained rephrasing the prob-
lem as an integral equation, so that the formula to be solved by
iteration is the Poisson integral:



2n 5
S 1nr cot L2 du
m 0 2

l._\

9-8 =

no

(8)

Convergence of the procedure is assured if the potato is "star-
shaped", that is, if its contour is crossed only once by any ra-
dius issued from the center [10]; therefore, the procedure is
generally safe and efficient.

Applications of the Theodorsen method to airfoils, bi-
blanes and cascades were pioneered by Garrick [11,12,13], who
used the transformations introduced by Joukowski, Ferrari and
K8nig to produce quasi-circles as intermediate images of given
contours,

For a better understanding of the rest of this paper,
three points should be made.

1) Mapping of a contour into an exact circle was neces-
sary, when problems of incompressible, potential flow had to be
solved, in order to take full advantage of the invariance of the
Laplace equation and of the easy evaluation of the flow past a
circle.

2) Since the only values of interest belonged to the ri-
gid contours, all calculations could be limited to the circumfer-
ence of the circle.

3) Nevertheless, all calculations, with the exception of
the ones related to the Joukowski mapping, were extremely cumber-
some when performed by hand., Most of the time, the Joukowski
mapping was preferred to the Karman-Trefftz mapping. Cascade and
biplane problems were rather analyzed by approximate methods.
The Hilbert integral, with the entire circumference subdivided in
Jjust a dozen intervals, was preferred to the more laborisus
Fourier expansions.

Such practical difficulties and the shifting of interest
towards problems in compressible flow contributed to relegate
conformal mapping into the background in the forties. When com-
puters came about, there was not so much a demand for solution of
incompressible, potential flow problems, and the consequent ap-
plication of conformal mapping techniques.

i
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2. Conformal mapping as a grid generator

Nevertheless, in recent times conformal mapping has again
been 1looked upon in connection with problems of compressible
flow, but of course the use of it as a device to solve the same
equations of motion 1in a simpler plane has been dropped, Since
neither the Euler equations nor the Navier-Stokes equations are
invariant by conformal mapping. The reason for revival stems
from the fact that in contemporary numerical gas dynamics the
equations of motion must be solved in the entire flow field, be-~
cause of compressibility effects, viscous effects, presence of
vorticity, etc. Contrariwise, for incompressible, potential flow
it is theoretically correct and practically convenient to search
for the solution on the rigid contour only. A computational grid
is necessary, upon which the equations are to be discretized.
When two space-like variables are involved, conformal mapping 1is
a very convenient tool to generate a computational grid.

If the boundaries of the flow field are mapped onto a
circle centered at the origin of a complex plane f = pele. the
network of p=constant and 6=constant lines is conversely mapped
onto the physical plane as an orthogonal grid, well draped around
the rigid contours because the latter are the image of the circle
itself.

Since the grid is orthogonal, the vector operators in the
physical plane can be expressed directly and easily in terms of
their counterparts in the mapped plane.

The search for an appropriate mapping 1is actually a
search for a single function of a complex variable, a task by far
simpler than the search for two functions of two independent
variables. All the findings 'of more than a century, properly
digested and interpreted as briefly shown in Section 1, can be
put together to suggest the most appropriate mapping for a par-
ticular task. Our computers have eliminated the tediousness,
inaccuracy and material errors which used to hamper the hand cal-
culations of half a century ago; they also allow the necessary



data for a very refined grid to be evaluated in a fraction of a
second. Complex arithmetic in FORTRAN and other languages of the
same level reduces coding to just about a rewriting of the basic
equations (except when angles contained in more than one quadrant
are involved).

Practical applications of conformal mappings to generate
grids have been developed in the last decade following two
separate lines. One proceeds from the observation that any con-
formal mapping is defined by an analytic function, and that real
and imaginary parts of the latter are harmonic functions. There-
fore, the conformal mapping problem consists of solving two La~
place equations. The task can be formulated in strictly numeri-
cal terms, using modern, fast Laplace solvers. This viewpoint
can be traced back to 1923 [14] and has been made popular
by a 1975 paper by Thompson et al. (15}. The other puts the em-
phasis on the use of closed form analytical expressions for the
mapping functions. It seems that the first non-airfoil related
application of the technigue was presented in 1972 (16}, although
the same problem was reformulated in a more general form only in
1974 [17]. We will try to analyze here the philosophy of the ap-
proach and to show how it works in practical cases.

3. Philosophy of the '‘closed form' approach

We will begin by discussing some of the advantages of a
closed form approach. To fully appreciate them, let us focus our
attention on what the majority of problems of current interest
are: Two-dimensional, unsteady flows or three-dimensional, steady
flows. In the former, the physical space is two-dimensional but
the computational grid may be variable in time; in these cases we
need a grid, generated by conformal mapping at every instant of
time, but depending on parameters which are functions of time,
In the latter, we may find it convenient to create a computational
grid on planes defined by two of the three space coordinates, and
again letting the grid change as a function of the third coordi-
nate. To organize the following formulae, let us stipulate that
the Cartesian coordinates on any plane to be mapped are x and y,
and that a complex coordinate is defined,

i
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z=x+1y (9)

using the symbol t either for time or for the third space coordi-
nate. The mapping of each z-plane onto another complex plane, '
defined by a variable ¢, will then be accomplished by an anaIytic
function: ' '

;g = tglze) (10)
where ¢ 1is shorthand for any parameter, function of t.

As in every flow problem, it is not so much the coordi-
nate of a point as the derivatives at that point which matter.
First, we need the derivatives of the coordinates in the physical
plane with respect to the coordinates in the mapped plane, and
vice versa, contained in the complex expression:

[o])

= 8¢
€ = 32 “n

Then, we need second derivatives, which appear in dealing with
the curl of the velocity vector, and these entail dg/dz. Final-
ly, we need derivatives with respect to t, viz. 3z/3t and 3g/dt,
which are computed from (10) and (11) by differentiating with
respect to ¢ and keeping z constant. Obviously, it is very con-
venient to have the mapping expressed in a closed analytlcal form
since all derivatives are alsp expressed in closed form and can
be exactly evaluated where’and only where they are needed, that
is, at the computatlonal nodes. The argument is particularly in-~
teresting with regards to the t—derivatives. If the grid changes
in t, the valuesrof z generally change in t at each nodal point;
therefore, numerical diffefgnpiation ‘at a constant z may> be

cumbersome and inaccurate.

There 1is another case where hav1ng a closed form mapping
is convenlent Potential (but ot 1ncompre551b1e) flow problems,
with the flow field extendlng tozlnflnlty. are commonly solved by
relaxation. Commonly, the phy51ca1 potential is expressed as the
sum of an unknown and the potentlal of a flow, satisfying the
proper phy31cal condltlons 'at 1nf1n1ty The latter is easily

formulated in terms of the transformed variables if the mapping




is defined by a closed form function.

Then, a difficulty seems to arise. As we said in Section
1, in most cases it is not possible to find a closed form mapping
which provides an exact circle as the image of a2 given contour;
it 1s clear that Theodorsen's step is not a closed form function.
Nevertheless, the difficulty is only apparent. Let us assume,
indeed, that we know a function capable of transforming a given
contour into a quasi-circular potato, Let us consider a computa-
tional plane with two variables, X and Y, relating X to p and Y
to 6. The functions X(p) and Y(6) will be so defined that X=0,
Y=0, X=1 and Y=1 on each boundary, in turn. The computational
region in the (X, Y) plane is, thus, the interior of a square.
In most cases, the functions X(p) and Y(8) are used to apply
proper stretching of coordinates in either direction, in order to
concentrate nodes where necessary. The computational grid is
orthogonal and divided into equal intervals. The corresponding
grid in the ¢-plane is not orthogonal (not only because the Xz0
line is not an exact circle, but also because the other boun-
daries may not be circles or straight lines either). Consequent~

ly, the grid in the physical plane is not orthogonal. Accuracy,r

however, is not impaired for want of orthogohality. The equa-
tions, originally written in the (p,8) frame, are recast using X
and Y as independent variables. Some additional terms will ap-
pear; the very important boundary condition on the rigid surface
will be properly written by stating that the normal velocity com-
ponent (not just the p-component) vanishes. In conclusion, we
are not expecting any dramatic advantage from having a circle as
one of the boundaries, and therefore we may consider our mapping
problem solved when we find a quasi-circle as the mapped image of
the given boundary. The Theodorsen step can be dropped with all

its additional burden of iterations, Fourier expansions, spline
fittings, etc. -

Let it be clearly stated that we are not afraid of unsur-
mountable difficulties or unaffordable computational times con-
nected with the Theodorsen step. That old (but hard to execute
by hand) way of computing Fourier expansions, which has been
given a new popularity under the FFT 1label serves the purpose
egregiously well. Dropping the Theodorsen step, whenever possi-
ble, is justified by our desire of achieving a solution to the
problem in a closed form, with a view to the formal calculation

I
i



of derivatives, particularly with respect to t. There is a de-
finitive need for them in all problems where the grid depends on
t.

This philosophy was clearly exposed in [16] and accepted
by Jameson [18,19]. We will discuss some applications in Sec-
tions 5 through 8. Before that, we will mention some of the
techniques which we tend to classify as numerical, rather than
analytical. )

4. Conformal mapping as a Neumann problem

The closed form approach may look like an empirical at-
tempt to solve the problem, on the basis of analogies and ima-
ginative variations, and therefore strongly dependent on the men-
tal structure of the investigator. I have heard the word "art"
used in a derogatory sense in connection with this type of work,
on other occasions, Actually, good science is the product of
personal ingenuity and crafty skill. What tends to be classified
as "scientific" in these days is rather "technological™, that is,
some process which has been sealed in a black box for general
purposes.

Whatever the consequences, there is no doubt that the
quest for an organized conformal mapping procedure is legitimate.

It is also classical. Green's formula:
v 3u _
f(u—a-r-l—v-ﬁ-)ds-o (12)

for two harmonic functions, u and v, regular in the domain sur-
rounded by the closed contour on which the integral is made, and
on the contour itself, dates from 1828. With any two points on
the contour denoted by c:peie and z:rei¢, and with c—z:ceia, it
follows from (12) that

u(z) = —% § fulo) 3%3 9 - W n ol ds (13)

A11 formulae related to conformal mappings can be obtained from
(13); 3u/3n is generally known from its conjugate, the variation
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of the tangent along the contour. Then (13) becomes an integral
equation for u.

Many different forms of the equation can be obtained, if
one makes use of well-known properties and formal rules, such as:
the Cauchy-Riemann conditions, integration by parts, Schwarz and
Poisson's integrals, integrals defining the coefficients of a
Laurent series. Different forms are also obtained by taking the
basic contour as a circle or as a straight line, and by defining
u either as the logarithm of z or as the logarithm of g. For ex-
ample, 1if we start from (6) and from a circle, the other contour
being a quasi-circle, we obtain the Theodorsen mapping in its in-
tegral form (8); the Fourier series form follows easily. The same
equation (6) and somewhat different integral equations have been
used by Symm [20] and Hayes et al. [21] to produce numerical
techniques which are not restricted to mappings of quasi-circles
onto circles, as in Theodorsen's, but apparently can handle any
(probably, star-shaped) contour. If we use the logarithm of g,
we can interpret Theodorsen's ideas in terms of derivatives, 3 1la
Timman [22], a variation which seems to offer some numerical ad-
vantages [17]. If we start from a straight line and an arbi-
trary, closed contour, using again the logarithm of g, we obtain
what Davis [23] presents as a generalization of the Schwarz-
Christoffel mapping to a polygon with an infinite number of in-
finitesimal vertices:

log g =%f log (¢-b) d8 (14)

Anyone interested in these types of comparisons could profitably
read a paper by Birkhoff et al. [24] which is outdated only from
a computational viewpoint.

Proceeding 1in the opposite direction as Davis, the
Schwarz-Christoffel formula for a polygon with a finite number of
vertices can be found as a particular case of (14). This formula
is, in principle, a very powerful mapping tool, It can map a po-
lygon on a cirecle, without restricting number, location and aper-
ture of vertices, or the lengths of the sides, and permitting
vertices to be located at infinity. It is really a definition of
g, rather than of ¢, which must be obtained by complex integra-
tion in a numerical form, in almost all the cases. This is not a
major shortcoming, however, since numerical integration can be
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performed quickly and efficiently. The derivative, dg/dz is
straightforward. Nevertheless, it 1is known that the coeffi-
cients, 4 and Gi which appear in the formula

§3
(12)

g =m (¢ -12,)
must be obtained by trial-and-error iterative processes (see, for
example, [23,25,261). If the grid does not depend on t, its
coefficients can be determined once and for all. In this case
the Schwarz-Christoffel formula belongs to the category which we
consider in the present paper. It does not if the grid depends
on t. The same may be said for all mappings obtained by solving
a Neumann problem via iterations on an integral equation or
Fourier expansions.

5. Kirman-Trefftz mapping for airplane cross sections

We will now consider some mappings using a finite number
of closed form relations.

The numerical analysis of a steady, supersonic flow past
an airplane may be performed by marching in an axial direction
and updating values at successive cross-sectional planes. The
region of interest in each plane is bounded by the section of the
body and the section of the bow shock, Conformal mapping of the
body onto a quasi-circular shape provides a grid which tends to
become a polar grid at infinity and therefore is the best suited
to adjust to the shape of the body, whatever it is, and to the
almost circular shape of the bow shock. The body shows a number
of edges and corners as those indicated by letters in Fig. 2. If
the alrplane is arrow-winged, stations will be reached where the
body will be composed of three unconnected parts; if two ficti-
tious lines are drawn between the:quelage and the trailing edges
of the wings, again we can seé corners and edges at all points
denoted by letters in Fig. 3. Observing that the corners and
edges always come in pairs, because of the symmetry of the cross-
section, we can think of eliminating them by successive applica-
tions of the Kirman-Trefftz mapping (3), with the singular points
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either on the contour or, in case of rounded edges and corners,
slightly inside. Note that edges require values of § between 1
and 2 and corners require values of § 1less than 1. When the
latter are applied, the corner is open, but so is the rest of the
plane, part of which may end up in a second Riemann sheet. In
principle, this is not an obstacle to the removal of corners, be-
cause the portion of plane which disappeared will be recalled
when removing the next edge. In practice, a quite cumbersome ad-
ditional piece of logic must be added to identify points belong-
ing to the second Riemann sheet. The trouble can be avoided by
executing the mappings not according to the order of appearance
of a corner or edge along the contour but in a sequence of de-
creasing values of §.

From the viewpoint of coding, the repeated application of
the Karman-Trefftz procedure has many advantages:
1) Regardless of the number, position and aperture of corners
and edges, the same operation is used, which means the code may
be written in the form of a2 loop and applied as many times as
necessary, automatically,
2) The mapping can be inverted, and the inverse mapping has the
same form; therefore, the same routine can be used for the direct
and the inverse mapping,
3) The derivatives are easily coded; for example g, as defined
by (11), 1is actually the product of the derivatives of each in-
termediate step, and the logarithmic derivative of g is the sum
of the logarithmic derivatives of such steps.

To show how close to a circle the image of a fuselage
with two sections of arrow wings is, Fig. 4 presents a computa-
tional grid in the physical plane and its image in the mapped
plane, Naturally, with the bow shock very close to the leading
edge of the wings, its own image is far from a circular shape
but, as we said above, departure from orthogonality of the grid
is not jeopardizing accuracy, and this is particularly true in
the viecinity of the bow shock, where the flow is uncomplicated.
Details of the technique and its application to the arrow-winged
airplane problem can be found in [17].
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6. Imaginative devices

There are no limits to the number of shapes which can be
obtained by executing elementary mappings in a sequence and using
a little ingenuity. Indeed, bilinear transformations, powers and
logarithms are the building blocks with which one should learn to
play, always keeping in mind that rotations and translations can
be cleverly used to locate singularities where needed. Here is
an interesting example, due to Rossow [271, which is entirely ex-
pressible by a sequence of bilinear mappings and powers (Fig. 5).

A circle, centered at the origin, is translated upwards
and then a Joukowski mapping changes it into an arc of a circle,
counted twice, The arc is rotated about one of its ends and 2
new singular point is defined somewhere along its length. A new
Joukowski mapping is applied, in reverse, so that the portion of
the arc between the two singular points become a circle ageain,
and the portion left outside remains appended 1ike an infinitely
thin tail. Finally the circle is relocated, and a third
Joukowski mapping is used to transform it into a Joukowski pro-
file; the 1little tail becomes a flap or spoiler, whose location
and length can be controlled by changing the parameters used in
the successive steps. According to our quasi-circular philoso-
phy, this very simple mapping can be used for any airfoil with
attached (but not infinitely thin) spoilers or flaps.

I faced a similar problem when confronted with generating
a grid for the calculation of the precursor muzzle blast [28]1. I
needed a grid shaped as in Fig. 6; the contour defined by D'C'CD
can be mapped onto the real axis of a w-plane, and its exterior
onto the upper half w—plané by a simple Schwarz-Christoffel
transformation [29, page 159], but this mapping would not provide
a family of grid lines issuing from what has to be interpreted as
the bore of the gun and wrap around the barrel, as in the figure.
The problem was solved by defining two new singular points, B and
B', in the w-plane and applying to this plane an inverse
Joukowski mapping onto a g-plane. Radial straight lines and con-
centric circles in the g-plane are now producing the wanted grid
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in the z-plane. Note that the position of B and B', being arbi-
trary, permits the ratis of outer-to-inner radius of the barrel
to be matched (Fig. 7). With the change of notation: w = 72 +
1/Z, which simplifies the coding, the mapping is thus defined by:

z = (r /m(2°-1/2%)/2 = 1og 22 - in]
(15)
2+ 1/2 =2 B (g + 1/7)

In the problem Just described, the computational region
is 1limited, on one side, by the precursor shock which moves out
in time. Therefore, the computational grid is a function of
time, but the dependence on time shows only through the stretch-
ing parameters; the mapping itself remains invariable in time and
the equations of motion carry no terms of the type ag/3t or
3z/3t, When a mapping is needed for the same problem 1in the
presence of a protruding bullet, however, the contour itself
changes in time and so does the mapping. Once more, the problem
can be solved with little additional effort. One can start with
a half circle (Fig. 8), reduce it to a half ellipse using a
Joukowski mapping, and then apply a Karman-Trefftz formula to
change the angles between the contour and the real axis. After
that, the mapping continues as defined by (15). The axis ratio
of the ellipse keeps growing as the bullet nose advances. The
power in the Karman-Trefftz mapping decreases from an initial 1
to a minimum value of 1/2. At this stage, the contour in the
physical plane makes a 90 degree turn at B and B', as required to
accomodate the grid to the side surface of the bullet (Fig. 9).

I. Different mappings for the same geometry

In solving problems of incompressible, potential flow
there is no ambiguity about the choice of the mapping since the
contours of interest are specified exactly and the mapping fune-
tion has to be regular over the entire flow field (boundaries ex-
cluded). In the present context, though, different mappings may
accomodate the same contours but generate completely different
grids, as we have mentioned in the preceding Section. Care must
be taken to use a mapping whose grid is the best suited for the
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problem in hand. This problem is currently acute 1in cascade
analysis, as we will mention later; here I would like to show it

in a simpler connection.

We want to generate a grid for the intake of which Fig.
10 shows the centerline and the shroud. We can drape our grid
about a semi-infinite slit, parallel to the real axis in the
upper half-plane. Two mapping functions, apparently opposed to
one another, can serve the purpose. The first is:

z =17 +¢€° (16)

This function maps the slotted half plane onto a strip, which is
a very convenient domain for our computational variables X and Y.
The corresponding grid (Fig. 11) is convenient for the interior
of the intake, but it needs some stretching to provide resolution
to the exterior of it; in particular, the outer surface of the
shroud is poorly resolved. The other mapping is defined by:

z =z + a log & (17)

and it maps the same region of the physical plane onto the entire
upper r-half-plane. Cartesian coordinates in the z-plane produce
the grid of Fig. 12. 1In this case, the grid is very good outside
and very poor inside. If we start from polar coordinates in the
r-plane, we obtain the grid of Fig. 13. The general appearance
of the grid lines recalls Fig. 11, but the situation is reversed:
the resolution is very poor inside and very good outside; in this
case, an accumulation of p=constant l1ines near the origin of the
z-plane 1s necessary to generate some coordinate lines inside
the intake. An application of (16), with a stretching of coordi-
nates to relax the resolution inside the nacelle, has been made
by Caughey and Jameson [307.

Anyway, these mappings are obtained in a very straight-
forward manner, and more complicated manipulations [31] do not
seem hecessary.
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8. Biplanes, revisited

Ives [32] has proposed a technique for the mapping of two
airfoils which is rich in possible consequences. We have seen in
Section 5 how the successive application of Karman-Trefftz map-
pings can eliminate corners and edges on a contour, producing a
quasi-circular shape. & similar idea, exploiting the theory of
images with respect to a circle, allows two airfoils to be mapped
on two concentric circles. Two Theodorsen mappings are used as
intermediate steps, as follows (Fig. 14). First, a Kirman-
Trefftz formula is applied to transform one of the airfoils into
a quasi-circle, and then the quasi-circle is transformed into an
exact circle by the Theodorsen technique, At this stage, the
Second airfoil is still shaped as an airfoil although with a dif-
ferent shape. The next step manages to transform the second air-
foil 1into a quasi-cirecle, without distorting the first circle.
The problem is solved by using the product, side-by-side, of two
Karman-Trefftz formulae; the first contains the two singular
points pertinent to the second airfoil (a and b) and their coun-
terparts in the mapped p%ane &“ and B%; the2segond contains the
images of such points (1/a s 1/b  and ro/a .rO/B » Trespectively,
where conjugates are denoted by ¥ and ro is the radius the image
of the first circle in the mapped plane):

*
(z=a)(z-r/a )

[(z—a)(z-1/a*)]6

(c=8)(e-r2/8")  (2-b)(z-1/b") (18)

O o o

Finally, the second quasi-circle is moved inside the first circle
by a bilinear transformation in such a way that its centroid
coincides with the center of the circle, and a second mapping of
the Theodorsen type is applied. Again, such a mapping must take
into account that the flow region is a ring between two concen-
tric cirecles. Therefore, the exponent in (6) cannot be a simple
Taylor series, as it would be if the flow occurred inside a cir-
cle, or a Taylor series of negative powers, as it would be if the
flow occurred outside a circle, but it must be a two-sided
Laurent series; we express this need by saying that the Theodor-



(,@!‘!a

sen mapping is defined in this case by:

*
. ef(c;c)—f(1/¢:c ) (19)

1]

where ¢ is any constant occurring in f(g) [12].

The idea of using the images of the singularities with
respect to a circle in order to operate on the other contour
without distorting the circle can surely be extended to problems
dealing with two separate contours but not necessarily airfoils.

Two questions can be posed. First, how can Ives' tech-
nique produce the mapping, without using elliptic functions? The
explanation can be found in the fact that the sequence of map-
pings used by Ferrari and Garrick consists of a logarithm, fol-
lowed by an elliptic function. The net result actually has only
one period, the other being neutralized by the multi-valuedness
of the logarithm. On the other hand, the periodicity is intro-
duced in Ives' mapping through the play of reflections of singu-
larities produced by (19). The second question 1is whether one
could bypass the two Theodorsen corrections, in the spirit of
Section 3 above. Of course, in this case we would have to deal
not with one distorted circle alone, but two, the first being
particularly important since the images of (19) would, in any
case, be defined with respect to a circle which now would only be
an approximation to the real contour. I believe that the tech-
nique could still be applied, but no examples are available.

g, Cascades

The climax of difficulties is reached in the problem of
generating a grid to compute flows through a cascade of airfoils.
Garrick [13] sensed the difficulty well ahead of the computer
era, but he did not have a way of measuring it; as we said, hand
computations were necessarily limited to the simplest cases. He
said: "It is to Dbe noticed that improvements in the initial
transformation are desirable and should be sought, particularly
to take care of highly cambered airfoils more conveniently, in
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order to reduce the amount of subsequent calculations." At that
time, the initial transformation was the one defined by (5), ob-
viously a poor way to get started when dealing when highly cam-
bered airfoils, since the basic Shape furnished by (5) is a cas-
cade of flat, Straight, double-sided segments. Unfortunately, in
a cascaazf?Bur parameters must be considered, solidity, stagger,
camber and thickness, and these parameters interact with each
other, whatever the choice of the basic mapping. So long as
solidity and stagger are low, even (5), applied to a moderately
thick and cambered airfoil, produces a reasonable quasi-cirele.
But as solidity and stagger increase, the contour tends to become
peanut-shaped (Fig. 15), with a catastrophic distribution of
points around it (something like a wide circle, corresponding to
& small portion of the original profile, with a small appendix,
which is the image of all the rest); and, at times, the contour
is not even star-shaped any longer. Can (5) be blamed for such a
behavior? A detailed discussion of this question would transcend
the 1limits of the present paper; let it Jjust be said that the
difficulty does not disappear when another mapping function,
adopted by Legendre [33] and Ives [34], is used (Ives' function
is the same as Legendre, to within a rotation and a bilinear
transformation)., This mapping can be written in the form:

£ + by8é _ sin Az ~ 1)
[C - b] T sin Az + 1) (20)

where z and 1 are the physical plane and the mapped plane,
respectively, 1 and -1 are the location of the trailing edge and
the center of the leading edge of a profile, respectively, 6§ 1is
the wusual Kirman-Trefftz exponent, A is related to solidity and
stagger by

2iA=n s elB (21)
and
b= -1 tan ? (22)

So far, the major advantages of this transformation with respect
to (5) are the presence of an exponent, & to produce profiles
with a finite trailing edge angle, and the possibility of comput-
ing either ¢ as a function of 2z, directly from (20), or z as a
function of ¢ from the inverse of (20):
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Stagger).

Polar coordinates are very simple to use, but they gen-
erate a very inconvenient grid because of the oresence of a
Singularity in the flow field between profiles, at the point
corresponding to the center of the circle [35]1. (See Fig. 17.)

For an O-grid, the best procedure has been suggested by
Ives [35]. It consists of mapping the circle onto a rectangle,
in such a way that two vertices correspond to the singular points
(points at infinity in the physical plane) and the Opposite side
corresponds to the circumference (the contour of the profile).
The basic function defines the correspondence shown in Fig. 18
(where there is a straight slit between the two singularities).
In the same figure, lines corresponding to straight lines, paral-
lel to the sides of the rectangle, are shown inside the circle.
The function which performs the task is the simplest of the Jaco-
bian elliptic functions:

z = sn (¢, m) (25)

where m is defined by the position of the singularities and tends
to 1 when solidity and stagger increase. Using Landen's
transformations, the Sine-amplitude can be expressed in terms of
trigonometric functions (for m close to 0) or the hyperbolic
tangent (for m close to 1); the coding of the subroutine is obvi-
ous and the computational time is negligible. Therefore, (25) is
a convenient function.

Note that the cirele (or quasi-circle) obtained through
(5) or (20), and the circle obtained from (25) are by no means
the same, despite the fact that in both planes the images of the
points at infinity are symmetrically located on the real axis.
The second ecircle 1s centered at the origin, but the first is
not; therefore, a bilinear transformation must be used to map the
two circles onto each other. This mapping depends on all four
basic paramecters and the trailing edge angle as well. Its in-
terpretation, thus, is not easy, but a systematic study 1s needed
to understand what range of basic contours, acceptable as a back-
ground of a grid for given profiles, can be obtained by using

(25), a bilinear mapping and (23), in that sequence, without
resorting to a Theodorsen step. It seems to me that we either
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have reasonable shapes, in which case that step can be skipped,
or combinations of solidity and stagger which tend to generate
intermediate shapes similar to the one on the right hand side of
Fig. 15, in which case the Theodorsen technique would not work,
and where another intermediate step, of a different nature,
should be wused. Even Joukowski mappings may help (see the last
contour in Fig. 1). Work along these lines is urgently needed,
if we want to obtain simple mapping procedures for three-
dimensional turbomachinery problems. To make the point, we
present a three-step Sequence, in which the first circle, ob-
tained from the rectangle, is the one of Fig. 18. A second cir-
cle (Fig. 19) is obtained by a bilinear transformation and the
cascade, obtained through (23) is shown in Fig. 20. The contour
is ugly, but the grid is perfectly usable.

10. Grids for ablated, three-dimensional bodies

We conclude this presentation showing a method applied to
generate a computational grid for a three-dimensional, time-
dependent problem. The flow to be determined is the shock layer
around the ablated nose of a cone-cylinder; the flow is mostly
supersonic, but it may have a subsonic bubble and an imbedded
shock. The geometry of the body, which is axisymmetrical before
ablation, becomes three-dimensional because of different ablation
in different meridional planes. A grid is needed in a number of
these planes, and corresponding points must be connected between
adjacent planes, in order to generate a three-dimensional compu-
tational mesh. It is therefore convenient to have a grid defined
in closed form, to make the evaluation of circumferential deriva-
tives as easy as possible. For a given section of the body (Fig.
21) we define a skeleton, that is, a polygon, all contained in-
side the body, approximating the shape of the wall. Instead of
using a Schwarz-Christoffel function to transform the skeleton
into argtraight line in a single operation, we have opted for
straightening one vertex of the polygon at a time, beginning with
the one farther from the nosetip. As in the case of the repeated
Kirman-Trefftz mappings, the procedure is easily coded in a loop.
The last step consists of a square root transformation, in order
to bring the skeleton on the real axis and the body axis on the
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imaginary axis of the Z-plane. The image of the wall on the
t-plane 1is close to a straight line. The grid, which will be
normalized between the image of the wall and the image of the bow
shock, 1is always well shaped, despite strong concavities of the
body produced by severe ablation. The method, first tested on
axisymmetric problems [37], has been Successfully applied to
three-dimensional problems [38].
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Figure 1.- Joukowski contours for different values
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Figure 2.- Cross-section of fuselage and wing.
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Figure 3.- Cross-section of fuselage and arrow wing.
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Figure 4.- Grid for fuselage-and-arrow-wing calculation,
in physical plane and mapped plane.
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5.—- Ceneration of wing with attached flap.

Figure

6.- Grid for muzzle blast calculation.
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Figure 8.- Generation of the muzzle mapping,
with protruding bullet.
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Figure 9.- Grid for muzzle with
protruding bullet.
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Figure 10.- Nacelle geometry.
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Figure 1l.- Grid generated by equation (16).

Figure 12.- Grid generated by equation 17,
Cartesian coordinates.
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Figure 17.- Frith's grid for cascades.
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Figure 18.- Circle mapped from rectangle,

equation (25).
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Figure 19.- Circle mapped from cascade, equation (20).

Figure 20.- Cascade obtained from circle of Figure 19.
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Figure 21.- Grid for ablated body.
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GRID GENERATION USING DIFFERENTTAL SYSTEMS TECHNIQUES*®

Joe F. Thompson and C. Wayne Mastin
Department of Aerospace Engineering
Department of Mathematics
Mississippi State University
Mississippi State, MS 39762

I. INTRODUCTION

In recent years a multitude of techniques has been developed for
generating computational grids required in the finite difference or
finite element solutions of partial differential equations on arbitrary
regions. The importance of the choice of the grid 1is well known. A
poorly chosen grid may cause results to be erroneous or may fail to
reveal critical aspects of the true solution. Some considerations
that are involved in grid selection can be noted from the papers of
Blottner and Roache {11, Crowder and palton [2], and Kalnay de Rivas
[3]. While these papers discuss ervxor for one-dimensional problems,
few results exist for higher dimensions. This report will examine the
errors in approximating the derivatives of a function by traditional
central differences at grid points of a curvilinear coordinate system.

The implications concerning the accuracy of the numerical solution of

a partial differential equation will be explained by considering several
numerical examples. Although this study only considers the two-dimensional
case, the techniques and implications are equally valid for three-
dimensional grids.

An interesting feature of the error analysis in this report is its
simplicity. Most of the results follow by merely working with the trunca-
tion terms of some power series expansion. It is noted that these series
expansions also give rise to higher-order difference approximations
which can significantly reduce error when the grid spacing changes rapidly,

as might be the case in problems with shock waves or thin boundary layers.
!

*This research was sponsored by NASA Langley Research Center under
Grants NSG 1577 and NGR-25~001-055.
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When transforming a partial differential equation from rectangular
to curvilinear coordinates, the derivatives of the functions defining
the transformation must be evaluated. If the relation between rectangular
and curvilinear variables is given by a simple analytic expression, the
transformation derivatives may be computed either analytically or
numerically. Truncation errors in both cases are considered for
comparison.

One objective of this work is to provide tools to examine a grid,
together with a computed solution, and predict possible inaccuracies
due to the grid. The grid may thus be redefined to give a better
solution. Directions for future work could be an extension to higher
dimensions of the one-dimensional grid optimization technique of Pierson
and Kutler [4].

This report also discusses the control of coordinate line spacing

through functions incorporated in the elliptic generating system for
the curvilinear toordinates. Attraction of coordinate lines to other
coordinate ‘lines and also attraction to fixed lines in physical space
are covered. Appropriate forms of the control functions required to
produce desired spacing distributions are derived. Finally a procedure
for distribution of points around a boundary curve according to local
boundary curvature is given. 1In addition a few examples of recent

generation of coordinate Systems are given.
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T1. TRUNCATION ERROR ANALYSIS

Suppose a curvilinear coordinate system 1is generated by trans-
forming an arbitrary physical region of the xy-plane onto a rectan-
gular computational region of the gn-plane. The relationship between
partial derivatives of a Function f with respect tO physical and
computational variables is well-known. It will be included here for
later comparison with approximations derived from series expansions.

Only first and second order derivatives will be considered:

af  8x df , 3y 3f

3E T B ox | 8E 3y
2o oo, dbyar, on? 2, By O
652 a€2 X 3&2 3y 3E ax2 3f Jf 9x3Yy
2 .2
+ & W
Q ay

o2 _ %k af Oy B,
atan _ 3Een ox | atan dy & 3n 4.2

L @x oy, dx Byplf 9y By Of
& 9N 3n 9&7 3x9y

The derivatives with respect to n can be obtained by replaéing ¢ with
n in the first two equations of (1).

Although this change of variables formulation can be easily used
in deriving difference approximations for derivatives with respect to X and vy,
nothing can be said about truncation error. An error analysis can, however,
be based on Taylor series expansion of function values at neighboring points
about a single point in the physical region. In order to distinguish
between derivatives and differences in the following, the differential

notation is used for derivatives while subscripts denote the usual

second order central difference expressions. The following approximations

for the central differences are valid when all series are truncated after
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second derivative terms. A unit mesh width in the En-plane is assumed

without loss of generality.

2 2
of of 1 o f 1 3°f
3 —_— —_— == —— —_—
e T M ae T Ve oy Ry ox? 255 T YR 5y

32f

1
t3yy,, —
2 7g'ee ay2

of 3f 2 1. 2.3%f 1
x 24 LE 2402 &
g6 Ter ax T Ygr oy * Okt gxy R A T
2
2 3°F
3°f 2,1 222%
+ 1
3%y + (yg + Wee )8y2 (2)
£, =~ x_ 3f f L 1,, 2 »%¢
&n £n o + Yen §§'+ 5((x )EE 2xx€n);;§
2 2
3°fF 1, 2 A°F
+ ((xy)gn T KYp, T yxgn)axay + 5y )gn - 2yy€n)ay2

Together with the corresponding two equations for fn and f,,, this
constitutes a system of five simultaneous equations which can be solved
to produce difference expressions of two first and three second derivatives
of f with respect to x and Y. Assuming the third order derivatives of
f are bounded, the truncation error in the above expressions is O(h3),
where h is some measure of the local mesh spacing. Consequently, when
(2) is solved for the difference approximations of the physical derivatives
of f, the truncation error is O(hz) for first derivatives and 0(h) for
second order derivatives. In contrast, solving the system (1) with the
f, x, and y derivatives replaced by differences (and including the
ctorresponding equations for fr and fnn) simultaneously to produce expres-
sions for the five physical derivatives of f gives rise to 0(h) and o(l)
truncation errors for the first and second order derivatives,

In both cases it has been assumed that the coefficient matrices on
the right hand sides of (1) and (2), i.e., the coordinate derivatives,
including the omitted n differences, are well conditioned. 111 conditioned
matrices which may result from extremely skewed coordinate lines could

cause further deterioration in accuracy. Higher order accuracy can be



obtained using (1) if second order coordinate differences are assumed

to be O(hz). This effectively limits the rate of change in coordinate
line spacing and the curvature of coordinate lines, however. No

simple relation between the coefficients of the second order derivatives
in the last equation of (1) and (2) was found except for the fact that
they would be equal if the differences in (2) were replaced by deriva-

tives.

The variation in numerical solutions using (1) and (2) is illustrated

in the solution of Laplace's equation. The function

alx, ) = k(L + 176+ )

satisfies Laplace's equation for x2 + y2 > 1 and has a vanishing normal
derivative on the boundary. This boundary value problem was solved
numerically on 1 < x2 + y2 < 100. A grid was selected with 39 radial
coordinate lines and 49 circular coordinate lines. The first 23
circular coordinate lines were uniformly spaced after which the spacing
was increased by a factor of 5. The difference between the exact and
qumerical solution is indicated in Figure 1 for difference equations
derived from (1) and (2). The effect of the sudden change in coordinate
line spacing was clearly less severe when using difference expressions
from the higher order series expansion.

A similar error analysis can be carried out where the derivatives
of x and y with respect to § and n are computed analytically rather than
approximated by differences. In this case a series expansion in the
gn-plane is required, followed by substitution of expressions for the
higher-order £ and n derivatives in terms of the x and y derivatives
(see Ref. 5 for complete detail). Retaining physical derivatives of £
through second order, as in (2), the following approximations are
generated. The second derivative approximations, fgg and fgn, are very
lengthy and only the first and second order derivatives of x and y are
included here, the complete expressions being given in Ref. 5. The

first derivative approximation includes third order derivatives:?
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Considerable similarity exists between the approximations in (2)
and (3) and corresponding statements can be made about the effects of
the coordinate system on truncation error. For example, it can be noted
that for the first derivative approximations to be second order accurate,
the second and third order derivatives of x and y must be O(hz) and
O(h3), respectively. Due to the additional restriction on the third
order derivatives, it is not difficult to find examples where solutions
of (1) with numerically computed derivatives of x and y are much more
accurate than solutions using the analytical expressions for these
derivatives.

With reasonable care in the selection of the grid any of the above
difference formulations will give equally good results. For example,
consider the grid for the region about a Joukowski airfoil depicted in
Figure 2. This grid was constructed by the conformal mapping of an
annular region with uniformly spaced circular coordinates. As in the
above example, Laplace's equation is solved with vanishing normal
derivative imposed on the airfoil. The solution is the velocity potential

for flow about the airfoil at zero angle of attack. Table 1 indicates the



the difference between the computed solution and the exact solution

on the surface of the airfoil where the error was greatest.

Table 1. Comparison of Difference Formulations

Differencing Method Max Error RMS Error
Taylor Series (2) .03123 .00864
Analytic (1) .02216 .01256
Numerical (1) .02411 .00795

For this example there is clearly no advantage in using the difference
expression from the series expansion in (2) over using (1) with the
derivatives of x and y computed either analytically or numerically.
There is another aspect to the question of the use of analytically
calculated coordinate derivatives, as opposed to numerical difference
representatives, when fully conservative difference formulations are
used. In that case the formulation will not be fully conservative with
the analytical expression in the sense that a uniform solution on the
field will not be strictly preserved. This can lead to instability if
the differences of the coordinate derivatives are large.

Thus far only problems of error which deal directly with the coor-
dinate system have been considered. This source of error can be controlled
by limiting the higher order differences of derivatives of x and y. A
more serious problem in numerical computations is the error in the approxi-
mate solution which results from large higher order derivatives of f.

In transforming from physical to computational variables, the derivatives
of f with respect to £ and n are replaced by differences regardless of
whether derivatives or differences are used for x and y. The truncation
error in approximating the computational derivatives of f can be minimized
to some degree by a properly chosen grid. However, there are limitations
in the grid choice since, as we have previously observed, a highly dis-
torted grid also contributes to large truncation errors in the approxima-
tion of the physical derivatives of f. To analyze the total truncation
error due to solution and grid, it is convenient to introduce matrix
notation.

Suppose the derivatives in the physical and computational planes

are related by (1). This relation can be written

A = AD (4)

where
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Difference expressions for D are generated by replacing the elements
of 4 (and possibly A) by the appropriate difference approximations. If

the truncation term is retained, the equation (4) becomesg

§+ e =AD (5)

where § is the vector containing the difference approximations and

= -

3 +
3™ 3n agan
84

f
A
n

3)
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Solving for D in (5) we have
1

D=ATYs+ A e (6)

Now ¢ is unknown but can be estimated using differences of f.
Although such numerical differentiation does not tend to be very
accurate when applied to an approximate gsolution of a partial differ-
ential equation, the value of A_lc has been used successfully to
distinguish regions of high error from regions of low error. This can
be illustrated by returning to the numerical solution of potential flow
about the Joukowski airfoil in Figure 2. The comparison of truncation
error with error in the solution is indicated in Figure 3 for grid
points beginning near the trailing edge and ending near the leading
edge of the airfoil. The grid points were chosen to lie on the second
coordinate line from the airfoil surface so that no extrapolation was
needed to estimate the elements of €.

Fach factor in the truncation error estimate can be analyzed
independently. The factor A-1 deals only with the grid coordinates,
while ¢ involves only the solution of the partial differential equation.
In the above example consideration of £ alone would seriously under-
estimate the order of accuracy near the leading and trailing edge since
the distortion in the coordinate system would not be taken into account.
The influence of the factor A_l can be analyzed by examining the condi-
tion of the matrix A. An i{11-conditioned matrix not only magnifies the
effect of the truncation terms in € but also the effect of deleting the
additional terms which appeared in the series expansions (2) and (3).

We will now consider a case where an extremely ill-conditioned
matrix is encountered. The Navier-Stokes equations in stream function-
vorticity formulation were solved numerically for viscous flow about a
circular cylinder. The data in Table 2 illustrates the growth in the
condition number of A as the circular coordinate lines are concentrated
near the cylinder to resolve the boundary layer. Only the Laplacian
of vorticity was included in the truncation error computation since
this truncation term clearly dominated the remaining truncation terms
in the equations. As n increases, the dominating factors in the trunca-
tion term shifts from the elements of € to the elements of A—l. An
examination of vorticity values revealed a clear deterioration of the

numerical solution for n = 4.
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Table 2. Maximum truncation error for V24 and
condition number of A. Circular coordinate lines
T =1+ 9(1 ~ exp(un/48)) / (1 - exp(n)),
n=2~0,1, ---, 48, Reynolds no. = 3.

n Max Truncation Max Condl (A)
1 .1079 45
2 L0482 78
3 .0891 259
4 3.0918 1017

For later reference, we have from (2) for the one-dimensional case
that the simple two-point central difference expression for the first

derivative, fg/xg’ has a truncation error term given by

which acts as a numerical diffusion. This effect was pointed out earlier

in Ref. 1.
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1II. COORDINATE SYSTEM CONTROL

A. Original Generating System
In the formulation of boundary-fitted coordinate systems generated

from elliptic systems as given in Ref. 6 the curvilinear coordinates £, n)

were determined as the solution of the system

P(E,n) (7a)

20 = (e, (7b)

<
2l
]

<1
=
1

the transformed plane becomes (from here on, subscripts indicate

which in
derivatives)
_ 2
axgg - 2BXEU + Yxﬂﬂ = =J (ng + an) (8a)
2
-2 + = - + 8b
Oy, BYen ¥ Won J(Py€ Qyn) (8b)
with a = xn2 + yn2 (9a)
(96)

g = x,x_+ ygy

[ n
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Y = x.° + Ve (9¢)

[
|
]
Caat
<

n "~ *nY (9d)

B. Attraction to Coordinate Lines

Here the functions P and Q are to be chosen to control the coordinate
line spacing. 1In Ref. 6 those control functions were taken as sums of
decaying exponentials of the form

n

P= 2 agsen(e - gexp(-cle - g, (10a)

m
"1 bysen(e - e exp(=d;((€ - 6% + (n - n D

n
Q e agsgn(n - ni)exp(—ciln - niD (10b)

m
—izilbisgn(n - ni)exP(—di((é - Ei)z + (n - ni)z)l/z)

Here the ai, bi, Ci’ and di of the Q functions are not necessarily the
same as those in the P function.

In the P function the effect of the amplitude ay is to attract £-
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coordinate lines toward the £i—line, while the effect of the amplitude
bi is to attract £-lines toward the single point (gi, ni). Note that
this attraction to a point is actually attraction of £-lines to a point
on another £-line, and as such acts normal to the g£-line through the
point. There is no attraction of n-lines to this point via the P
function. In each case the range of the attraction effect is determined
by the decay factors, g and di' With the inclusion of the sign changing
function, the attraction occurs on both sides of the g-line, or the

(gi, ni) point, as the case may be. Without this function, attraction
occurs only on the side toward increasing &, with repulsion occuring

on the other side.

A negative amplitude simply reverses all of the above-described
effects, i.e., attraction becomes repulsion and vice versa. The effect
of the Q function on n-lines follows analagously. A number of examples
of this type of coordinate line control have been given in Ref. 6.

In the case of a boundary that is an n-line, positive amplitudes
in the Q function will cause n-lines off the boundary to move closer to
the boundary, assuming that n increases off the boundary. The effect
of the P function will be to alter the angle at which the £-lines inter-
sect the boundary, since the points on the boundary are fixed, with
the £~lines tending to lean in the direction of decreasing £. If the
boundary is such that n decreases off the boundary then the amplitudes
in the Q function must be negative to achieve attraction to the
boundary. In any case, the amplitudes a, cause the effects to occur
all along the boundary, while the effects of the amplitudes bi occur
only near selected points on the boundary.

If the attraction line and/or the attraction points are in the
field, rather than on a boundary, then the attraction is not to a fixed
line or point in space, since the attraction line or points are them-
selves solutions of the system of equations, the functions P and Q
being functions of the variables § and n. It is, of course, also
possible to take these control functions as functions of x and vy, instead
of £ and n, and achieve attraction to fixed lines and/or points in the
physical field. This case becomes somewhat more complicated, since it
must be ensured that coordinate lines are not attracted parallel to

themselves, and its discussion follows in a later section.
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C. Control Functions for Certain Spacings

For certain simple geometries it is possible to integrate (8)
analytically for appropriately selected forms of the control functions,
and thus to determine the control functions required to produce a certain
line spacing. 1In this regard consider the case of two concentric circu-
lar boundaries of radii r; and rp, with ry > r;.

With n = 1 on the inner boundary, n = J on the outer boundary, and
€ varying monotonically from 1 to I around these boundaries, a solution

of (8) can be given in the form

x = x(n) cos [2n ($Th] (1a)
y = r(n) sin [27 (%Z%)] (11b)

Substitution of these expressions into the equations of (8) with P(&,n) = 0

>

yields

+r'°Q=0 (12)

This can be made a perfect differential by taking the control function

Q to be of the form (following the direction of Ref. 7)

Sy 1
CE-FTm) T2

r

where the minus sign has been introduced merely for convenience. Since

~i5 is equal to 15 for the solution given by (11), this form of } suggests
r' J

taking Q to be of the form

Q= - X £ (13)



c

Substitution of (13) into (12) yields

" 1" "
r Y £ 0 (14)

which can be integrated twice to yield

clf(n)
r(n) = c e

The constants of integration may be evaluated from the boundary condi-

tions, r(l) = T, r(J) = Ty, SO that

£(n) - £(1)

[_______——
e = ry L F T I (15)

This equation may then be solved for f(n) to yield

r(n)
£y - e O
F(J) = £(1) (16)
lll[}z]

1f the distance from the body to the Nth n-line is specified to be

the following equation must be satisfied:

TN,
T
ln[;ﬁ]
FN) - £ _ 1 17
£(3) - £( r,
ln[;—]
1

It should be noted that the form of f(n) is still arbitrary, subject to

(17).

5
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Alternatively, to set r' at the inner boundary, n = 1, we have,
upon differentiation of (15) with respect to n and subsequent evaluation

at n = 1, that f(n) must satisfy

r'(l)
£l 0
O - (W "1, (18)
In(=)
1

The two derivatives appearing in the truncation error of first
derivatives, as given in last equation in section IT, are, from repeated

differentiation of (15),
T

2
ln(;I)
r' = T < £y (FE (W] (19a)
r
1n (;z)
r'" = ??37—:—%TTT [r'£'(n) + ef"(n) (19b)

Thus if a function £(n) with a free parameter is selected, (17)
may be used to determine the parameter in the function such that the
Nth n-line lies at a specified distance, Ny - rl,from the inner
boundary. Alternatively, the free parameter may be determined by (18)
such that the spacing at the boundary is set by specification of r'
there. The derivatives in the truncation error terms may then be
calculated from (19). With the function f(n) determined, the control
function Q is then given by (13).

For example, with the function (Ref. 7)

£(n) = gL

where K is a free parameter, we have, by (17), that K must be the

solution of the nonlinear equation

r

N

In(—)
NKVL o g !

J-1 = r (20)

JK 1 2
lﬂ(;‘?

1

(_

(



N~ to set the Nth n-line at rg- Alternatively, the value of K required
to set r' to a specified value at the inner boundary is determined by

(18) as the solution of the nonlinear equation

' (1)
r
1+ InK _ 1
J-1 =TT 1 2L
JK -1 2
ln(r—)
1

For this function, the derivatives appearing in the truncation error

term, (19), are given by

£'(n) = (1 + nan)K“'l (22a)

£1(n) = (2 + nlnk) (AaROK" ! (22b)

The control function Q is given by (13) as

.y 2% K )
Q J2(l + nink) 7K (23)
It can be shown by consideration of the ratios of successive

derivatives that the higher derivatives of this function are progres—

sively decreasing if K is in the range
0 < 1InK < %(/3 -1 (24)

Since the left side of (21) is a decreasing function of K for positive
K, the smallest value of the spacing at the boundary, r' (1), that can
be achieved while maintaining progressively decreasing higher derivatives

of f(n) occurs with K at the upper 1imit of the inequality (24), viz

r, %(1 + ¥35)
r'(1)min = rlln(;fﬁ 1
1 J exp[i(/g -1D@-n1-1

(25)
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It is not reasonable to use smaller values of r'(1) since the progressively

increasing higher derivatives of f(n) will result 1in significant trunca-
tion error introduced by the coordinate system.

Another choice of f(n) might be
f(n) = sinh [K(n - 1)] (26)

for which, from (17), the Nth line occurs at rN for K given by the

solution of the equation

sinh [K(N ~ 1)] _
sinh [K(J - 1)] ~ r,
In(—)
1

Or the spacing at the inner boundary is r'(1) for K given by (18):

r'(1)
K ! (27)
sinh [K(J - 1)] ~ r
1n(;—0
1

The first two derivatives and the control function are given by

£'(n) = Kecosh[Kk(n - 1)] (28a)

£'(n) = K%siah [K(n - 1)] (28b)

qQ = --15 Ktanh [K(n - 1)] (29)
J

In this case progressively decreasing higher derivatives occur for K in
the range 0 < K < 1, so that the smallest practical spacing at the

inner boundary is



Y

2
(=
rlln rl

' _ — e

r (l)min sinh (J - 1)
The control function for the spacing distribution of Roberts,
Ref. 8, can be determined in the same manner as follows. With the

notation of Ref. 8 adjusted so that the boundaries occur as used

above, we have

) Gy -1, _ 11
e =y gy e 1t Tt (30)
with
b+r (H—~41
o) = G 7T
2

with b a free parameter.
Although the form of £(n) could be extracted by substitution of (30)
into (16), it is simpler to determine the parameter b from either r(N) = Ty

or for a specified value of r'(l). The derivatives are

b+r T
2 2 G 1
r'(n) = — ln(z—7) — (1 - =5b (31a)
J -1 b - T, G + 1)2 r2
2 b+r r
" _ 1 2 2, 6(1 - Q) !
r'(n) = 23— e G ‘2 —~(G :——1)3 (1 -——rz)b (31b)

The control function Q is then given by (13) and (14) as

_Y r"
Q= - "5l=-7) (32)
J2 Y
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with r, r', and r" to be substituted from (30) and (31). A
Finally, another type of function is a patched function using

different functions near and away from the inner boundary to achieve a

group of closely spaced lines near the inner boundary with fairly

rapid expansion outside this inner group. This is done as follows:

Let the spacing of the inner group be such that the same change in

velocity would occur between each two lines for a velocity distribution

given by u(r). To do this, invert the velocity function such that

r = tv(u), and then take

n -1
N -1 Y 1

u(n) =

17
=
in
2

when uy is the velocity at the edge of the inner group of lines. Then

(

From this function all the derivatives and the control function may be
calculated, the latter being determined by (13) and (14).
Now outside the inner group of lines, i.e., for N <nz<J, let

r(n) be a quartic polynomial:

ARGV NI ULIE NN O

+a(n—N)4+r N<ns<yg

N
where the three derivatives at N = N are determined from the derivatives
of the inner function, all being evaluated at n = N. The final parameter,

a8, 1s determined such that r(J) = r,. Thus

_ o _ _ 1. w2 _ 1, _ oy 3
(rJ rN) r N(J N) 5T N(J N) Ad (J - N
4

a =
J - N

The outer control function is then determined from (13) and (14). This
composite control function has only one continuous derivative, and thus

could possibly lead to truncation error introduced by the coordinate system.
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It is, of course, also possible to integrate the coordinate
equation (8) for the one-dimensional case. In that case the control

function Q is given by

Qz_l___l'_"_=__Y__f"(ﬂ) (33)
J2 r' 2 £7(n)
and
) =, + (ry - o R =LY (34)

All the other steps follow in analogy with the two-dimensional case.
Now, although the two—dimensional case given above applies only to
concentric circular boundaries, the effect of using the same control
functions for the general case will be qualitatively the same, with even
closer spacing near inner boundary with stronger curvature. Thus the
control functions derived in the above manner can be expected to produce
the type of spacing desired in general applications. A version of the
TOMCAT code incorporating several of these functions has been written

and has been used to produce coordinate systems for airfoils with the

spacing at the airfoil set at 0.0l
VR
example is shown in Fig. 4, using the function above (20). Other exam-

automatically through (18). An

ples are given in Ref. 9.

D. Revised Generating System

The form of the control function Q taken in (13) naturally leads
to the idea of replacing the original elliptic system, (7), with the

system

TGN SR NG (352)

<
sl
[}

oo = (n 40 @ (35b)
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since the terms multiplying P and Q here are, respectively, equal to EE S
and 15-. With this system the transformed equations are J
J
-2 + = - (aPx, + 36
axEE BXEn Yxnn (a Xg nyn) (36a)

aygg - 28yEn + yyn = - (aPy5 + yQyn) (36b)

n
This form has also been given by Shanks and Thompson, Ref. 10, and by
Thomas and Middlecoff, Ref. 11. This form has now been adopted in the
latest version of the TOMCAT code.

The exponential forms of the functions P and Q, and the discussion
given therewith above, are still applicable with this system. Appropriate
values of the attraction amplitudes are several orders of magnitude smaller
with this new system because of the relatively large values attained by
the terms multiplying P and Q for small Jacobians.

Finally, it is useful to solve (36) simultaneously to display P and

Q explicitly as

.. L 37a ~
P = - o7 (yan - any) (37a)
1
Q= Y3 (ygDX ~ XéDY) (37b)
with
= - + 38
Dx X, 26X£n x o (38a)
Dy = -2 + vy 38b
Y Ve ByE,n Vo (385)
With (37) the control functions required to produce any specified
solution x(£,n), y(&,n) could be calculated. Although such a procedure
is normally of only academic interest, since the solution x(E,n), v(&,n)
is yet to be determined, it might be useful in some cases to determine
[ '
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P and Q from (37) for some approximate solution generated, say, by
simple interpolation from the boundaries, and then to use smoothed
values of these functions as the control functions for the actual
solution. Although the approximate solution might have lacked continu-
ity of derivatives, the actual solution determined by solving the
elliptic system with the smoothed control functions will have continuous
derivatives, while following generally the form of the approximate
solution.

E. Control Functions for Near Orthogonality at Boundary

Another example of the usefulness of (37) is as follows. The
solution for the concentric circle case can be generalized slightly to
include variable spacing of points along the boundaries by taking,

instead of (11),

x = r(n) cos [2m g—%—:*%%%l (39a)
- ; . 8LE) - g(l)
y = r{n) sin {2 T g(l)] (39b)

Substitution of these functions in (37) then results in

P=-§—'.' (40a)
' _ "
Q= -5 (40b)

The second of these is the same as (13), using (14) and considering the
above re-definition of Q, and was used above to generate the control
function Q.

With g(n) determined by the boundary point spacing, the control

function P given here will maintain the £-lines as radial lines, i.e.,
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normal to the circular boundaries. Note that arc length along the

circular boundary is given by

g(€) -~ g(l)

s = D e T 1
so that the function g(f) may be related to arc length by
8(6) = g(1) + BIL= 2 (42)
Thus (40a) can be rewritten in terms of arc length as
P--5 (43)

As discussed above for the control function Q, this idea can be
carried over to the case of general boundaries to produce the same effect
qualitatively. Thus in the general case, the control function P could
be determined at each boundary from (43), and then values of P in the
field could be taken from linear interpolation between the values at
corresponding boundary points.

F. Attraction to Fixed Lines in Physical Space

As mentioned above, the attraction of coordinate lines to fixed lines
and/or points in physical space, rather than to floating coordinate Iines
and/or points, requires further consideration. Recall that in the above
discussion, n-lines are attracted to other n-lines, and ¢-lines are
attracted to other Z-lines. It is unreasonable, of course, to attempt to
attract n-lines to £-lines, since that would have the effect of collapsing

the coordinate system:

£-line

n~line

i §
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When, however, the attraction is to be to certain fixed lines in
X-y space, defined by curves y = f(x), care must be exercised to avoid
attempting to attract n or ¢ lines to specified curves that cut the n

or £ lines at large angles. Thus, in the figure below:

E-line

it is unreasonable to attract ¢ lines to the curve f(x), while it is
natural to attract the n-lines to f(x)-

However in the general situation, the specified iine f(x) will not
necessarily be aligned with either a £ or n line along its entire length.
Since it is unreasonable to attract a line parallel to itself, some
provision is necessary to decrease the attraction to 2ero as the angle
between the coordinate line and the given line f(x) goes to zero. This
can be accomplished by multiplying the attraction function by the cosine
of the angle between the coordinate line and the line f(x). It is also
necessary to change the sign on the attraction function on either side
of the line f(x). This can be done by multiplying by the sine of the
angle between the line f(x) and the vector to the point on coordinate
line.

These two purposes can be accomplished as follows. Let a general
point (x, y) be located by the vector g(x, y), and let the attraction
line y = f(x) be specified by the collection of points §(xi, yi),
i=1, 2, -——, n. Let the unit tangent to the attraction line be

(g). Then the sine

g(xi, yi), and the unit tangent to a g~line be T
and cosine of the angle between the £-line and the attraction line may

be written as

[t;x(R-8)] .k
[B - §1=

sine =
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cosine = ¢, . T.(g)
~1i ~i

where k is the unit vector normal to the two dimensional plane. These

relations are evident from the figure

£-line

attraction line

The control function P(x, y} may then be logically taken as

e, x(R-8)] - k
o (), -~i i =
P(x,y) = ;:iai(gi I ) R - §i| ;xp(—dilg - gi[) (44a)

with the analagous form for Q:

n
QGy) = sEa (e, . D (44b)

These functions depend on x and y through both R and E(&) or I(n) and
thus must be recalculated at each point as the iterative solution of (36)
proceeds. This form of coordinate control will therefore be more expres-

sive than that based on attraction to other coordinate lines.



There is no real distinction between "line" and "point" attraction
"Line" attraction here is simply attraction
If line attraction is speci-

with this type of attraction.
to a group of points that form a line £(x).
fied, then the tangent to the line f(x) is computed from the adjacent

If point attraction is specified, then the "tangent"

G.
along the boundary according to the local boundary curvature.
= f(x).

points on the line.
must be input for each point.
The tangents to the coordinate lines are computed from
1,. .
T(€)= —(ix_ + 3v.) (45a)
~ /’(_L n ~"n
(V- Lax, + 3y (45b)
/‘Y_' ~
Point Distribution on Boundary According to Curvature
One final technique to mention concerns the placement of points
Let a
Then if s is arc

boundary curve be describedby the function y =

length along the boundary we have

ds _ N —Y
1+ f

Now take the rate of change of arc length with the curvilinear
coordinate, £, along the boundary to be exponentially dependent on the
Thus let

local radius of curvature, r, of the boundary.

|a
wn
1
Yt
{
1]

o
['aal

This function causes the arc length to

is a free parameter.

‘where b
change slowly with & where the curvature is large.

(’w |

63



64

Then

4f _dsds _ V) 502

dx dx’dg o
1 ~-e

Since f and r are known at each X, & normalized ¢(x) may be determined

from

E(x) =1+ L7 (46)

assuming x is normalized to vary from O to 1 and € to vary from 1 to I.
The quadrature may be taken numerically if necessary.

Then for I number of f-points £ = 1, 2, ——, I on the boundary, the
corresponding values of x can be determined by inversion of £(x), done
by interpolation of tabular values if necessary. The arc length between
each of these points can then be calculated and the value of the free
parameter b can be adjusted iteratively to produce, say, a specified
maximum arc spacing along the boundary, or perhaps, to match a specified
arc spacing at either end or, for that matter, at any given point. In
application to airfoils, this procedure is applied to the upper surface
with b chosen to match a specified maximum arc spacing. A separate
application is then made to the lower surface with b there being chosen
to match the arc spacing adjacent to the leading edge on the upper
surface,.

This procedure produces a smooth point distribution on the boundary,
with points concentrated in regions of large curvature, yet free of the
rapid spacing changes that lead to coordinate~-system-introduced trunca-

tion error of the type discussed in an earlier section.
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1V. SOME RECENT APPLICATIONS OF COORDINATE SYSTEMS

In addition to extensive application to airfoils, as illustrated
in Fig. 4, in which the transformed plane 1s an empty rectangle, some
more general configurations have recently been treated using a trans-
formed plane that contains rectangular‘voids as discussed in Ref. 12.
For example, a coordinate system used in a simulation of a nuclear
reactor cooling system is shown in Fig. 5, taken from Ref. 13, and
systems for Charleston harbor (Ref. 14) and a portion of Lake

Ponchatrain are shown in Figs. 6 and 7.

V. CONCLUSION

Control of the spacing of coordinate lines so as to resolve large
gradients in numerical solution of partial differential equations
continues to be of paramount importance. Research has provided some
means of control and of error estimation. The experience gained thus
far has indicated the versatility of the coordinate systems generated
from elliptic systems and the possibility of optimization of such
systems in adaptation to the nature of particular partial differential

systems and boundary configuration.
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Figure 2.- Coordinate system about a Joukowski airfoil.
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MESH GENERATION USING ALGEBRAIC TECHNIQUES
Peter R. Eiseman
Institute for Computer Applications in
Science and Engineering, USRA
and
Robert E. Smith
NASA Langley Research Center

Coordinate transformations are powerful tools for the solution of the
partial differential equations which describe physical phenomena. The
use of transformations leads to well ordered discretizations of the
physical domain and thereby renders a simplification in a numerical solution
process. The discretization is constrained by the underlying physics, the
problem geometry and the topology of the region where the solution is to
be obtained. The constraints can be stated in geometric terms. In
particular they can be categorized as boundary constraints, uniformity
constraints, and internal constraints. Boundary constraints include: the
basic geometry of solid objects, the transmissive junctures between and
around solid objects, the choice of representation for the boundaries, the
angles at which transverse coordinate curves intersect boundaries, and the
rate of entry for such coordinate curves. Uniformity constraints are
applied to either local or global distributions of coordinate curves or

points to form a basis from which the curves or points can be redistributed.

73



This may be based on an a priori specification of a distribution function
or on a solution adaptive approach. In either case, the redistribution
must not be distorted by the underlying transformation. Internal con-
straints are applicable when an interior shape or interior mesh structure
is to be smoothly embedded within a global mesh to simplify the simulation
of physical processes in the given region.

Algebraic mesh generation techniques are highly advantageous for
meeting the constraints described above. Algebraic techniques provide
exact control of the mesh properties necessary to satisfy the given
constraints. Although other methods have been developed which provide some
degree of control, the Tevel of control is not in general sufficient to
satisfy certain of the constraints. For example, the smooth embedding of
a Cartesian mesh within a global mesh structure cannot be readily con-
structed with the application of differential equation techniques. Also,
three dimensional meshes are not in general readily obtained with non-

" algebraic techniques. On the other hand, algebraic techniques require
more complex specification of the data to assemble a mesh. The purpose

of this paper is to present an overview of algebraic techniques for mesh

generation and set forth the underlying concepts which have been successful.

Both two- and three-dimensional domains are considered.

The Multi-Surface Transformation

When curvilinear coordinates are employed in the numerical solution
of a boundary value problem, constraints must often be placed upon the
coordinates, in addition to the basic requirement that the bounding sur-

faces are coordinate surfaces of one or more coordinate systems. The
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locations of the constraints can occur anywhere in the problem domain.

On the boundaries, a particular pointwise distribution may be needed; in
regions near boundaries, a particular coordinate form may be advantageous;
and away from the boundaries, an jnternal coordinate specification may
also be required. Typically, the constraints will arise either to resolve
regions with large solution gradients or to cause some simplification in
the problem formulation and solution.

In conjunction with the demand for constraints, the general multi-
surface transformation [1] will be examined. The multi-surface transfor-
mation is a method for coordinate generation between an inner bounding
surface 3] and outer bounding surface ﬁN' To establish a particular
distribution of mesh points on each bounding surface, a common parameteriza-
tion T is chosen for each surface. This is equivalent to a coordinate
description of the surfaces which yields the desired surface mesh when the
parametric components of £ are given a uniform discretization. With the
parémetric description, the inner and outer bounding surfaces are denoted
by 31(%) and 3N(%) respectively. In continuation, parameterized
intermediate surfaces 32(%),...,3N_](%) are introduced so that they
can be used as controls over the internal form of the coordinates. The
intermediate surfaces are not coordinate surfaces but, instead, are
surfaces which are used to establish a vector field that is composed of
tangent vectors to the coordinate éurves spanning the coordinate system
to connect bounding surfaces. It is also assumed that the collection
of surfaces ﬁ](f), 32(%),...,3N(%) is ordered from bounding surface

to bounding surface. An illustration is given in Fig. 1. For a fixed
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Fig. 1 - A piecewise linear curve and its tangent field.

parameter value T, there is a corresponding point on each surface. The
piecewise linear curve obtained by connecting corresponding points is

given by the dashed curve in Fig. 1. From the figure, it can be observed
that the tangent directions determined by the piecewise linear curve are

piecewise constants. As { is varied, the field of tangent directions
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obtain their smoothness (level of differentiability) only in . To obtain
smoothness in going from bounding surface to bounding surface, a suffi-
ciently smooth interpolation must be performed. The result is a smooth
vector field of undetermined magnitude which gives the desired tangential
directions for coordinate curves connecting the bounding surfaces. A

unique vector field of tangents is then obtained by correctly choosing

magnitudes so that, on integration, the bounding surfaces are fit precisely.

In symbols, a vector field tangent to the piecewise 1inear curves 1is

given by

between the kth and (k + 1)th surfaces where k is taken to vary (if

N > 2) from the first bounding surface to the final intermediate surface.
These vectors are indicated in Fig. 1. The coefficients Ak are scalars
which determine the magnitude of the vectors but not the directions. When
an independent variable r s assumed for the spanning direction, a
partition ™ < ... < ryop can be specified in correspondence with the
tangents of Eq. 1. The partitioned variable can then be used to represent
the tangents as the discrete vector valued function which maps Ty into
Vk for k=1...N-1. A sufficiently smooth vector field V(r,t) is
then obtained by a sufficiently smooth interpolation V(rk,f) = Vk(%).
With r as a continuous independent variable, the r-derivative of the

coordinate transformation B(r,t) s equal to the interpolant and is

given by
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where wk(rj) is unity at k = j and vanishes otherwise. When Eq. 2

is integrated with an initial v, value of P (£), the transformation
1 1

becomes
N-1
P(r,t) = B (%) + o MG (B) - P, (3)
where
r
6 (r) =/ y (x)dx , (4)
"

from which we observe that the interpolants wk must be continuously
differentiable up to an order which is one less than the level of smoothness
desired for the coordinates. The construction of local controls on the
coordinates will rely upon the development of suitably smooth interpolation
functions. If the magnitudes Ak of Eq. 1 are chosen so that each
Aka(rN’]) is unity, then the evaluation of the transformation at N-T
will reduce to 3N(t) by means of a telescopic collapse of terms in

Eq. 3. With this choice, we obtain the general multisurface transformation

of Eiseman [1] which is given by

160
B(r.t) = By (1) —ﬁ By () - B(D)1 . (5)
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On examination, each interpolation function b can be rescaled without
changing the transformation; hence, the original vector field interpolation
becomes an interpolation only on vector directions.

When the interpolants b are polynomials in r, the coordinate
curves which connect the bounding surfaces are globally defined by poly-
nomials in r of one greater degree. The specification of boundary
properties for the curves and a global control over their general form are
obtained by choices of intermediate surfaces and the associated partitions
of r. For notational simplicity, let ry = 0 and ry_y = 1. In the
simplest case when there are no intermediate control surfaces, there is
just one vector field direction V](%) which is determined solely by
the bounding surfaces. The interpolant iy js then a constant function,
G](r) = T G](r)/G](1) = v, and the polynomial 2-surface transformation

becomes
Bir.t) = By + o [F(D) - PO, (6)

which is the case of linear coordinate curves connecting boundaries. The
linear case has occurred in many studies including [2], [3], and [4] and
is limited to at most one prescribed coordinate property per boundary
which can be either a pointwise distribution or a distribution of angles
with the linear transverse coordinate curves. To allow for the prescrip-
tion of an additional coordinate property on one of the boundaries, an

intermediate control surface is introduced and the polynomial 3-surface
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transformation is computed from Eq. 3 with w] =1-r and wz = r
corresponding to directions of V](%) and VZ(T) of Eq. 1 and Fig. 1.

The integrals from Eq. 4 become

2
- r
G'I(r) =r- 2 )

2
. r
Gz(r) - 2 L)

and since G](l) = G2(1) = ], the original vector field which is discrete

in r 1is determined by

v] (‘E) = Z[ﬁz(_f) = ‘P)](%)],
(8)
Vo) = 2Py() - By(h)l,
because Ak = 1./Gk(1) in Eq. 1. Upon substitution from Eq. 7 the
polynomial 3-surface transformation is given by
P(r) = By(3) + r(2 - )[B,(T) - By ()]
(9)

+ IR (E) - By(D)].

In continuation, an additional coordinate property can be prescribed
on each boundary when two intermediate control surfaces are used. The

polynomial 4-surface transformation is computed from Eq. 3 with interpolants
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which respectively correspond to the directions of V](Y), Vz(%), and

>

V.(f) which, in turn, are respectively associated with partition points

3
ry = 0, Ty and rg = 1 and which are defined to vanish at all partition

points except the ones of association for each function. For simplicity,

we will set r, = %— so that the partition is uniform. The nonuniform

case is a simple but algebraically more complex extension [1]. With

ro = %3 the integrals from Eq. 4 become

1. 32,13
G(r) =5 r-gro+37,

v_1.2 1.3
Gz(r)-zr -Br, (]])
G3(r) = % r3 - %—rz,

and from an evaluation at the endpoint r = 1 we have 61(1) = %?3

Gz(l) = %3 and G3(1) = —%u By substitution, the polynomial 4-surface

T
transformation is given by
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which explicitly shows that in addition to fitting the boundaries (Eq. 14),
the intermediate surfaces 32(t) and 33(%) can be used to control the

angles at which the transverse coordinate curves in r intersect the
Moreover, the choice of intermediate surfaces can

boundaries (Eq. 15).
also be used to control the shape of the transverse curves and the distribu-
coordinate surfaces. The general derivation and

r
For our purposes, the discussion on

tion of the constant

discussion is given in Eiseman [1].
coordinate system controls will be deferred until local methods are pre-

sented for our survey of some of the material developed in Eiseman [5],

[6].
can be obtained from the evaluations of the transformation (Eq. 14) and its

An alternative form of the polynomial 4-surface transformation (Eq. 12)
With the evaluations, the intermediate surfaces

derivatives (Eq. 15)
can be expressed entirely in terms of boundary data, which results in

} oy . 19
_E) - B(09{) + ‘6—‘3—]" (09%)3
(16)

P,
and
. 1 9P
B(1) = POLD - g 57 (1,1).
Upon substitution of Egs. 14 and 16 into Eq. 12 we obtain
Br2) = (1 - 38 + 2r9)B(0,3) + r4(3 - 2r)P(1LY)
(17)
re(r- 2 & (01 - PO - ) * 0.0,
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after grouping terms by boundary type. By examination, the coefficients
of the boundary evaluations for the transformation and its r-derivative
can easily be identified as just the canonical Hermite cubic interpolants
on the unit interval 0 < r < 1. When the r-derivatives are specified
to be normal to the respective boundaries, we obtain the transformation
presented by Smith and Weigel [3].
In continuation, polynomial N-surface transformations can be
systematically established from Eqs. 3-4 and the interpolants
N-1
Y lr) = .I_I] (r-ry, (18)
i7k

for k =1,2,...,N-1. In each case, the transverse coordinate curves are
polynomials of degree N-1 in r with vector valued coefficients which are
functions of the surface coordinates 1. Polynomials, however, are globally
defined for all r, and as a consequence, local mesh properties cannot be
controlled without a global effect. As an example, suppose that we wish
to smoothly embed a general rectilinear Cartesian system within a global
mesh structure to obtain a system of the form illustrated in Fig. 2 where
the Cartesian region within the mesh is bounded by the darkened curves.
In the Cartesian part of the mesh, coordinate curves in r would be lines
which pass through it at a uniform rate. Since global polynomials in r
would be uniqueiy determined by the Cartesian region, curved boundaries

could not be fitted.
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Fig, 2 - A smoothly embedded Cartesian region
within a global mesh structure.

To obtain precise local controls which could be successfully applied
to generate a mesh as i1lustrated above in Fig. 2, local forms of the
multisurface transformation (Egs.3-4) were established and analyzed by
Eiseman [5], [6], and [7]. Our discussion will follow the development
given by Eiseman in [6] and will focus upon two-dimensional applications
with a surface coordinate T = t. When the interpolants wk are
nonvanishing on only a local region, the precise local controls over the
coordinates that were obtained will be i1lustrated with the local piecewise
Tinear interpolants that are depicted in Fig. 3. For algebraic simplicity,
the analysis is restricted to the case with the uniform partition ry =k
with the clear understanding that nonuniform partitions will follow the
same analytic pattern. Since the multi-surface transformation remains

unchanged when the interpolants are scaled by any sequence of nonzero
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Fig. 3 - Piecewise linear Tocal interpolants with partition points
re =k for k=1,2,...,N-1.

numbers, the height wk(rk) of each interpolant can be chosen arbitrarily. . =
In particular, the form of the multi-surface transformation can be

simplified when the heights are adjusted so that each interpolant integrates

to unity which yields Gk(rN_]) =1 for all k. The integrals are

obtained from triangular areas, and by direct observation, lead to the

height adjustments wl(r]) =2, wk(rk) =1, and wN-](rN-1) =2 in

correspondence with the successive illustrations in Fig. 3. Also, in

correspondence, the explicit form of the normalized interpolants are

given by

2(2 - r) for 1
by(r) = s (19)
0 for 2 <r <N -

r<?

| A
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(r-k)+1 for k-1<r<k
b (1) = : (20)
(k - r) + 1 for k<r<k+1
0 for k+1<r<N-1)
. 0 for 1<r<N-2
Uy (1) = : (21)
2(r - N + 2) for N-2<r<N-1

and their integrals defined in Eq. 4, by

1-(2 - 1vm for 1 <r<?2
G (r) = 5 (22)
M 1 for 2 <r<N-1
0 for 1 <r<k-1

12(r - )2+ (r-k) + 172 for k-1<r<k
mx?,v = 5 1(23)
-1/2(k - )¢ - (k - r) +1/2  for k

|~
-
A
—
+
—

1 for k+1<r<N-1
0 for 1 <r<N-2
Gy_q(r) = , (24)
(r-N+2)2  for N-2<r<N-1

which are depicted in Fig. 4.

"

.
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N-2 N-1

Fig. 4 - Integrals of normalized interpolants for the partition re = k.

On the interval k <r<k+ 1, the integrals Gi(r) which correspond

to interpolants defined over nonintersecting intervals are either unity or

vanishing depending upon whether the interval of definition precedes or
follows the interval under examination. When i = 1,2,...,k - 1 which

is nonvacuous for k > 1, the integrals Gi(r) have been evaluated over
the entire domain for which the respective interpolant Y 1s nonvanishing;
hence, these preceding integrals are unity by the chosen normalization.

When i =k + 2, k + 3,...,N - 1, the interpolants v ea;h vanish on

1< r<k+1; hence, the integrals G; also vanish there. As a
consequence, 61 for i =k, k+ ] yield the only nontrivial contribu-
tions for the multi-surface transformation which reduces to

k-1
3(r,t) = 3](t) + § [31+] - P, (t)] + Gk(r)[3k+] t) - ﬁk(t)]

e (MPp(t) - B, (6] + 0 (25)

= 3k(t) + Gk(r)[$k+](t) - ﬁk(t)] + Gk+](r)[3k+2(t) - 3k+](t)]s
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N which depends upon only the three control surfaces 3k’ $k+1’ $k+2

C

which can be arbitrarily selected to our advantage when they are not
bounding surfaces. With substitutions from Eqs. 22-24, we obtain the

partition point (rk =k for k=1,2,...,N - 1) evaluations

P(1,t) = Py(1),
B(2,t) = 5 [B,(t) + P4()D,
Blk,t) = 5 [B (1) + B q ()1, (26)

Bk, t) = 5 [P () + Bpp(t)]s

B(N-2,1) = 5 [By_p(t) + Py 1(8)];

B(N-1,t) = By(t),

which, in addition to boundary fitting at the énd péiﬁts r=1 and
r=N- 1, also shows that the transformation passes through the midpoints
of the lines which connect the intermediate control surfaces for any

fixed surface coordinate t. Moreover, from the general multi-surface
construction (Egs. 1-5 and Fig. 1), the transverse coordinate curves are
tangent to the connecting lines at the partition point evaluations. The

tangents at partition points can be explicitly obtained from substitutions
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of the interpolation functions (Eqs. 19-21) into the r-derivative of

the transformation (Eq. 25) and are given by

oP

2[Py(t) - Bi()],

o

o (2,t) = Py(t) - By(t),

ar (kot) = B (e) - B (1),
(27)

5 (kt15t) = By o(t) - B, (t),

P

3r (N-2,) = By 1(6) - By (1),
oF (N-1,t) = 2[B,(t) - By ,(t)]
ar ’ N N-] :

In graphical form, this process is depicted in Fig. 5.
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Fig. 5 - Coordinate curve segments for k < r < k+l.

Between the control surfaces 31 and ﬁj for i > j, the distribution
of constant r coordinate surfaces can be controllied for the general

multisurface transformation (Eqs. 4-5) when uniformity can be specified

along a direction of measurement

ﬁi(%) - 33.(%)

(@) =
i|31(%) = ﬁj(%);‘

for then arbitrary distributions can be applied relative to uniform

conditions. An illustration is given in Fig. 6.

”ﬂm

(
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o/
Fig. 6 - Measurement of uniformity.
To obtain uniformity, the projected arc length
Sprst) = [P(r,B) - Ps()] - 2(B), (29)
depicted in Fig. 6 must be linear in r, or equivalently BSp/ar must be
independent of r. But then from Eq. 25 and with the relative projections
Cy(t) = [$m+](t) - P (t)] » 1(t), we have
p
72 = U (M0 (8] + 1 (r)C 4 (1) .
%73

92



{

-ZC](t) + Cz(t) for k =1
= -Ck(t) + Ck+](t) for 1<k <N-=-1) r+ function of 1, (30)
—CN_Z(t) + ZCN_](t) for k=N-1

where the last equality comes from Eqs. 19-21. Hence, for k =3, jtl,..., i-1,
uniformity is obtained if ZC](t) = Cz(t) should k =1, Ck(t) = Ck+1(t)
- should 1 <k <N-=-1, and CN-Z(t) = ZCN_](t) should k = N - 1. A more
thorough discussion on uniformity is available in Eiseman [1] for the
global case, in Eiseman [5], [6] for the local case, and in Eiseman [7]
for the general cases.
To explicitly demonstrate the application of the local controls, and
— at the same time, reveal the basic algorithmic steps, coordinates will

- be obtained for a simple transition from a purely Cartesian system into a

) purely Polar system. For 0 <t < 1, the Cartesian coordinates will be
) specified below a line q(t) = (2t-1,0) and the Polar coordinates, beyond a
§ circular arc /2 G(t) where -U(t) = (-cos 0, sin 8) for o = (2t + 1)n/4.
% The line and the arc are depicted in Fig. 7.
i
i

N’
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(-1,0) (0,0) (1,0)

Fig. 7 - Basic curves for the Cartesian to Polar transition example.

To obtain uniformity near the sides (t = 0,1) of the transitional region,
the unit vertical distance will be used as a basis for displacements to

establish uniformity below the line and beyond the circular arc. For the

line, et

Pr(t) = Q) - (0,2,

= Q(t) - (0,2),

=
(A%
—_
+
pa—
f

(31)
P3(t) = Q(t) - (0,1),

Pa(t) = (1),
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N/ 50 that for

A B (t) - Py(t)
Hﬁ.ﬁv = = AOv.ﬂv' AwNv
\H“ AGERNON
we have
,(t) = [Fy(t) - Fy()] - 7{t) - (0,3 + (0.1) = 3
Cy(t) = [P5(t) - Bp(0)] - 7(t) = (0.1) (0,1) = 1, (33)

[By(t) - P3()] - (t) = (0,1) - (0.1) = T

™
w
—~~
*
—
)

which satisfies uniformity for 1<r<3 and yields a Cartesian system from

B(1,1) = By(8) = B(1) - (0.3, (34)
up to
wa;v"w%&s+wis_u9:-ﬁ?w. (35)
Similarly, for the circular arc, let
Po(t) = /2 u(t),
(36)
Belt) = (1 + /2) (e),
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Byt = (3 + /2) u(v),

be the last three surfaces so that for

37(t) - ﬁs(t)

T(t) = = (t) (37)
R - o]

we have
C(t) = [Pglt) - Pglt)] - T(t) = G(t) « G(t) = 1,

and (38)
C(t) = [P(t) - Be(0)] » x(t) = Ji(n) - (e = L,

which satisfies uniformity for 5 <r <6 and yields a Polar system from

'the circular arc

P(5,t) = 3 [Pg(t) + Be(t)] = 2+ 2) G(w), (39)
up to the circular arc

Pl6.t) = P,(t) = (3 + /2) G(t). (40)

The entire collection of bounding and intermediate surfaces are depicted

in Fig. 8.
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Table 1

MESH MESH
moex T K & By moex T K G G
1 700 1 .00 00 n 3.50 3 .88 13
> 125 1 .44 03 12 375 3 .97 28
3 1.50 1 .75 13 13 4.00 4 .50 100
i 1.75 1 .94 28 W 425 4 .72 03
5 2.00 2 .50 .00 15  4.50 4 .88 13
6  2.25 2 .72 03 6  4.75 4 .97 28
7 2.50 2 .88 13 17  5.00 5 .50 .00
g 2.75 2 .97 28 18 5.25 5 .72 .06
9  3.00 3 .50 .00 19 55 5 .88 25
o 3.25 3 .72 103 20 5.75 5 .97 56
21 600 5 1.00  1.00

\
. %_,,_____
|
__,4-, __
i opieT T T
| .
!
.__——vt‘—— ——
|
|
- —4i _L-_ .
Fig. 8 - Control surfaces for Fig. 9 - Polar-rectangular mesh.

polar-rectangular mesh.

For 21 equally spaced mesh points in r, the evaluation of the

< r-dependent functions is given with two decimal places of accuracy
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inrthe table. For a given mesh point, the interval k <r<k+1 e
containing it determines the index k for Gk and Gk+] respectively
in Egs. 22-24. Due to the uniform selection of partition points T @
repetitive pattern in the Gk evaluations can be observed and is
indicative of translated versions of the same function. When 9 uniformly
spaced mesh points are chosen for 0 <t < 1, and when the multi-surface
transformation of Eq. 9 is evaluated for the 21 x 9 mesh, we obtain the
coordinate mesh which is displayed in Fig. 9. From uniformity and

Table 1, the first 8 and the last 5 mesh points in r are seen to be
uniformly distributed, and the mesh is respectively purely Cartesian and
purely Polar for those points. To illustrate the computational aspect,
we shall explicitly evaluate the transformation at the point with curvi-

linear variables r = 4.5, t = 0. At t = 0, we have

%VV ;

d(0) = (2(0)-1,0) = (-1,0),
and (41)

0(0) = (-cos 7, sin 3) = (- -, L),

v2 V2
For r = 4.5, we are at the 15th mesh index in Table 1 where we read
across to note that we are in the 4th interval (4 < 4.5 < 5) with
84(4.5) = .88 and G5(4.5) = .13. By substitution into the transformation
(Eq. 25 for k = 4) we obtain
L.
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B(4.5,0) = 34(0) + 04(4.5)[35(0) - 34(0)] + 65(4.5)[36(0) - ﬁ5(0)]

- §(0) + 6,(4.5)[/Z u(0) - Q(0)] + G5(4.5) u(0)

_ (-1,0) + .88[/Z(- = D) - (-1,00] + 13(- —, 1
V2 /2 /2 2

(42)

1]

(-1,0) + .88(0,1) + (-.09,09)

(-1+0-.09, 0+ .88+ .09)

(-1.09, .97).

In continuation with local methods, the case with nonuniform parti-

tions for the piecewise linear functions is given in Eiseman [5]. 1In

addition, local interpolants with a higher level of smoothness (derivative

continuity) can be used and are developed in Eiseman [7]. With the local

two bounding

A

controls over the transverse coordinate curves which connect
curfaces, lateral bounding surfaces can also be approximately fit.

precise fit of the lateral boundaries can be obtained with blending
functions which were used by Gordon and Hall [8] to create a global method.

Further applications of blending functions will be presented at this work-
shop by Ericksson [9], by Forsey, Edwards,

Spradley {11].

and Carr [10] and by Anderson and
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Algebraic Mesh Generation - Three Dimensions

An algebraic approach to mesh generation in three dimensions results
in algebraic functions that relate a computational domain to a physical
domain. If the computational domain is defined by the three variables r,

£, and ¢ on the unit cube

then the physical domain in Cartesian (x,y,z) coordinates is given by the

transformation 3(r,£,c) = (x,y,z) where

X = X(Y‘QE’C:) 3

y = y(r,8,z) , (44)

z(r.g,z).

~N
1]

When Eq. 44 is nonsingular it has an inverse transformation denoted by

100
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r = rix,y,z),

g = £(x,¥,2) » : (45)

t(X,Y,2)

Y
1]

A uniform mesh is defined on the computational domain by constants Ar,

AE, oz (Fig. 10). This mesh maps using Eq. 44 to a corresponding mesh

1
e
o
111
"
-

L b

T

T
I

n
v
g

Fig. 10 - Computational domain.

in the physical domain which is not necessarily uniform. A simple example

for Eq. 44 is given by
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k L’
e T 1
kzr
- e - ] (46)
y = CXL{tan ey + YL (T)},
e " -1
k3§
- e -1
z = &X {tan o + Z, (——Eg~—~—)},
e~ -1
or
= 1 1 X
g = o Al + (e T - 1) X Y,
1 L
1 k2 Yy 1 :
FreEm Wl + (e © - 1)L - tan 5 ) v}, (47)
ko X yov -
K, ~
g = %— an{l + (e 3 ])(f—- tan 62) %—},
3 L
where k], kZ’ k3, Qy, ez, XL’ YL’ and ZL are constants. For
Ep<E<T1, 0<r<i1, 0 <z<1 and Y= Z, the uniform computational
domain maps into a frustrum of a paramid (Fig. 11) and the mesh is
concentrated in the physical domain according to the magnitudes and
signs of k], k2, and k3.
Equation 44 must satisfy the constraints outlined in the
introduction and which vary from problem to problem. For many mesh
generation problems, the constraints reduce to having the boundaries
in the computational domain map to boundarijes in the physical
< =
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Fig., 11 - Physical domain for Egs. 46-47
domain and concentrating the mesh in specified regions of the physical

domain. The polynomial N-surface transformations (Eq. 6-18) are global

algebraic mesh generation techniques which satisfy the basic boundary

of degree (N - 1)
N the

constraints and result in polynomial functions

with respect to one of the independent variables. For a small

polynomials are particularly simple. 1f the surface coordinates are

% = (£,z), the transformation 3(r,f) = (x(r,%), y(r,%), z(r,t))
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is_defined such that

><
It

x{0,£,z) = Xy (8,52),

g

YB{ = y(0,8,2) = Y{(&,z),
ZB} = 2(0,8,2) = Z4(g,2),
XBZ = x(1,8,2) = X,(8.2),
YBZ = y(18,2) = Y, (&,2),
zBZ = 2(1,E,2) = Z,(2,2),

104
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where 31(£,g) = (XB » Y Zg ) is one boundary and 3N(g,g) =
1

B 3
1 1
(XBZ, YBZ, Zy ) is the other boundary in the physical domain (Fig. 12).
2
The polynomial 4-surface transformation (Eq. 12 and 17) allows a
constraint to be placed on the mesh in addition to that of fitting the

boundaries. This constraint occurs when the physical mesh is required

to be orthogonal at the boundaries. Since the derivatives %é (0,¢,z),
%é—(],g,g), etc. can be computed from the cross product of the tangential
dXy dX, dY dy,

derivatives gz (£.2), T (£,2)» & (£,2), ra (£,2), etc., we have

X 3 YA
%—r- (2-1,6,2) 1 + % (2-1,£,2) 3 + %; (2-1,£,z) k =
7 3 [4
3X, 3y, 3Z,
K 55*-(c,c) 55*‘(€,C) gzj'(i,c) g =1,2 (49)
axX. aY 3z
% 2 2

where 1, 5, and K are unit vectors and K is the magnitude of the

normal vector, the choice of which can be used to apply controls developed

in Eiseman [1] for the shébé of coordinate curves in r and for the

distributioﬁ of constant r—surfaées. App1yin§ this procedure will force

the mesh to be orthogonal at the boundar{és but nof necessarily ﬁnQWHére else.
A globally uniform computational mesh (for linear Sp in Fig. 6) can

be mapped onto a physical mesh with the polynomial N-surface transformations

given in Egs. 6, 9, and 12. Concentration of mesh points in the r

direction is accomplished by choosing a function r(r) such that
105



0<r<l, 0<r<1 and .o (Fig. 13). For example Smith and

dr

(

215,
N
\
.
A\

/ -
/ y
// y // ///
/ /// o
//// e T
O e — - - r
0 1.
Fig. 13 - Grid control.
= =]
Weigel [3] used the function
: ekr‘_l
r= s D<rcd, (50)
ek -1

to contract the physical grid toward one boundary or the other. The number k
is a free parameter whose magnitude dictates the degree of contraction. When r
is replaced by r(r) in Eq. 6, the contractive function becomes embedded
in the Tinear polynomial part of Eq. 6, which results in

X = XZ(E,Z)F + X](E,C)(] - F):

y = Yo(ee)r + Yi(e,2) (1 - 1), (51)

z = 26,207 + Z4(£,0) (1 - 7), "
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f?*} where a uniform partition of 0 < v <1 yields a desired nonuniform partition

oof 0 <r <1 that, in turn, proportionately partitions the linear segments of

the transformation.

The example previously presented can be derived with this approach

where
x(€) = X(€,0) = X,(E58) = <5
— Y,(62) = Y (g) = X tan B
Yo(e,2) = Yy(g) = X (tan B, + Y
z(g,c) = Z3(8,2) = L,(E,2) = eX (tan 6, + Z))o + £X tan 0 (1 - z)s
k.z k &
- 3 _ 1
gee sl pef L, (52)
——— e 3 _1 e 1 -]
and
X = EXL,
y = Yo(e)r + ¥4 (€)(1 - r),
z = z(&,2),

é
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where

the boundaries.
or approximate functions based on discrete data from the boundaries.

In either case the representation must be in a form where parametric

A fundamental constraint of this approach is the representation of

The boundaries can be represented as analytical functions

variables which can be normalized to the unit interval are the independent

variables.

S

108

If the parametric independent variables are chosen to be

X] (E,Q) > X](Sst) L]

Vi(850) = Y (s,t),

Z](E,C) > Z](Sat) s

Xz(gsC) - XZ(S,t),

YZ(E:C) > Y2(S,t) ’

Zy(£,2) » Z,(s,t),

A

and t, then for the two boundaries

max’

max”

(53)

¢



The choice of parametric variables can vary from problem to problem.

A relationship between (£,z) and (s,t) is

This is a linear relation which maps the unit jnterval onto the parametric
variables. Contraction of the physical grid at the boundaries is

accomplished in the same manner as for the internal grid distribution.

E-EE), $o0,

C

(55)

Approximate Boundary-Fitted Coordinate Systems Using Tension Spline

Functions

It is often the case that boundaries in a physical domain are
described by discrete sets of points. The boundaries may be open or
closed. An approximate boundary-fitted coordinate system can be obtained
using the technique described and a tension spline function interpolation

S to the discrete data defining the boundaries. Tension splines are chosen
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because standard cubic splines and other higher order approximation ~
techniques often result in wiggles in the approximation. Wiggles on a
boundary using the technique propagate into the interior grid. The tension
parameter embedded in the tension spline approximation to the curve
allows control of the “curvedness" of the approximation. A very large
magnitude of the tension parameter corresponds to a linear approximation,
whereas a very small value corresponds to cubic splines. Tension splines
can be applied in two and three dimensions. An example is presented
here that is applicable to a two-dimensional mesh.
Using the tension spline technique, a point set on boundary one is

defined by {xi,yi};:? and on boundary two by {xj,y.}3=m Approximate

Ji=r
arc length is used as a parametric independent variable. The approximate

arc length is:

‘H
.

2 2,1/
507 LG =) by )T sy,

2 172

- - 2 _
Sj = [(XJ,,” XJ) + (‘yj“‘] ‘yJ) ] + SJ-_-':
1=1...n
J=1...m (56)
sy =0
0 <s. <s

(o=
I A
"
(&)
| A
7]
3
C
"

110



%%%;
must be mapped onto each boundary; that is
s = s(&),
0<gc<l,
0 <s <5,
0 <s <s,
This is accomplished by letting
s = gs, on boundary one and
s = &s, on boundary two.

functions on each boundary such that

s1nh[o(s£+]

From the computational coordinate system the unit interval (0 < € < 1)

(58)

The tension spline functions are piecewise continuous hyperbolic

- s)]

|
|
x =g"(s))
L 2 -
o s1nh[o(s£+]

- 5,)]

sinh[o(s - 52)]

+ 9" (s,,1)
ol ozsinh[c(sQH - sﬁ)]
8 113
9" (sy) | [Sge1 = ®
+ X, -
z o° Sog+1 T ¢
-
A (sgr) [ 5~ 5
i 2+ 02 So41 ~ Sq

m

(59a)
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(

sinhfo(52+1 - s)]

y = h"(s,) 2
o sinh[o(s£+] - SQ)]

sinh[o(s - sg)]

+ h"(S )
241 2 .
o“sinh[o(s, ; - so) ]
(~ £ -
h (Sg) Sg47 = S
Yy T T3 s -5
o] 241 £
=
h"(s,,-)ll s -5
2+1 2
+ y - y (59b)
4+1 o2 So4] T Sy
-
2 =1 on boundary one,
£ =73 on boundary two,
o = tension parameter.
The unknowns in these equations are g“(sg) and h“(sz) which are second 7

derivatives at the data points {xl,yQ}E:% and are obtained through enforce-
ment of the continuity of the first derivatives at the data points, and
the specification of two end conditions. A tridiagonal system of linear

equations results for each set of unknowns. The solutions of the tridiagonal

systems yield g”(sg) and h”(sl).
kr 1
A cubic polynomial and the contracting function r = & K —  provide
e - 1]
the relationship between the computational domain and physical domain.
dX2 dYQ
The derivatives o and a; are:
dn ds °
(60)
EI&:_K—di

(
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1 By defining a grid with constants Af and Ar

in the computational

domain a corresponding grid is explicitly defined in the physical domain.

An example of an airfoil grid is presented (Fig. 14). Data points on

each boundary, magnitude of the normal derivative, and contract parameter

values define the grids. Boundary data for the airfoil is shown in

Fig. 15. Also, for closed boundaries such as the airfoil, periodic

conditions are applied in the spline functions.

Fig. 14 - Mesh for Kdrmdn Trefftz Fig. 15 - Data definition for
airfoil using splines under boundaries of Kadrmin Trefftz
tension. ajrfoil domain.

Complex Three-Dimensional Mesh Generation

pment of three-dimensional meshes where mesh lines are free
The

The develo
to move in all three coordinate directions is extremely difficult.

reader is directed to reference 9 for examples of such unconstrained three-

dimensional meshes. An expedient approach for complex three-dimensional
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geometries is to attempt to simplify the problem by rendering the three-
dimensional geometry quasi two-dimensional. This is the essence of the
frustrum pyramid mesh previously presented. Also when there is axis-
symmetry in a problem, two-dimensional rendering of the geometry is
possible. This is demonstrated with the spike-nosed configuration shown

in Fig. 16. Figure 17 shows an algebraic generated mesh for one plane

Fig. 16 - Surface for a spike-nosed body.

of the geometry. The mesh is made three dimensional by rotating the mesh
in movements about the axis of symmetry.

For aircraft surfaces the problem is more difficult. There are,
however, several good software packages ([12] is a good example) for

surface definition of aircraft aerospacecraft geometries. In [12]
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Fig. 17 - Mesh for spike-nosed body.

the Harris geometry is used to establish coordinates for Coon's surface
definition of a coﬁfiguration. Spline functions are used to compute

the derivatives for'ﬁﬁg Coon's surface definition. Figure 18 shows the
input description foflérwing—fuse1age configuration where the wing and
fuselage are defined sequate1y. Figure 19 shows an enriched definition
of the configuration usiﬁéﬂtﬁe Coon's surfaces. A part of the available
software described in [12]‘15 thé apilfty to compute the intersection

of an arbitrarily defined plane ang théggﬁfface definition. For the

configuration shown in Fig. 19 pT?ﬁééfperpéhditﬁTéﬁuig the "x axis and
at a constant increment in the X direction are shown in Fig. 20.

1f an outside boundary isrdefined the corresponding intersection with the
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Fig. 18 - Data definition for a wing-fuselage configuration

Fig. 19 - Enriched

surface definition for a wing-fuselage

configuration.
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Fig. 20 - Planar intersections with a wing-fuselage configuration.

planes is computable. With an inside and outside boundary the techniques

previously described can be employed in two dimensions. Complexities

of multiconnected regions 1is introduced but this can be attacked with

branch cuts (Fig. 21).
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Fig. 21 - Branch cuts for multi-connected sections.
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Another attack on complex three dimensional problems is to define

several computational domains (Fig. 22) with mutual boundaries. The mapping
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function transforms the computational domains to parts of the physical

domain with mutual intersections.

Conclusions

Algebraic methods provide precise controls for mesh generation.
Methodologies for mesh construction can be based on a parameterized
description of surfaces which consist of bounding surfaces and intermediate
control surfaces. The surface Tocations determined by the respective
surface parameterizations determine the nature of the transverse coordinate
curves which connect the bounding surfaces. Relative to uniform conditions,

precise control over the mesh placement in the physical domain can be
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accomplished by embedding distribution control functions in the surface

parameterizations or in the transverse direction. Complex bounding

topologies, especially in three dimensions, cause mesh construction

difficulties. It is proposed that whenever feasible, the complex topol-

ogy be simplified such as rendering the geometry quasi two-dimensional. As

a final remark, precise controls are one of the major advantages of algebraic

methods: they give the capability to prescribe specific desirable and

helpful mesh formations.
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*
Generation of Boundary and Boundary-lLayer Fitting Grids

C. M. Ablow and S. Schechter
SRI International
Menlo Park, CA 94025

ABSTRACT

The details of extended physical processes, such as the gas dynamic
flow over an airfoil, the reactive flow through a combustor, or the electric
field in a multi-contact transistor, are understood by solving the dif-
ferential equations of a mathematical model of the process. The accuracy
of finite difference methods for the numerical solution of the equations
is increased if the underlying mesh fits the region boundaries and is
closely spaced in regions where the solution is rapidly varying. Automatic
methods for producing a satisfactorily adjusted mesh have been developeed
for one-dimensional problems. In one simple, effective scheme of this
kind the unknown function and the distribution of mesh modes are found
simultaneously, the nodes being placed so that they correspond to points

uniformly spaced on the solution curve.

In a two-dimensional generalization, the nodes correspond to points
on surface in two directions that are as nearly

equally spaced on the soluti
rfaces

orthogonal as possible. Examples of such meshes are shown for given su
in the figures. The meshes fit the circular boundaries and come closer

together where the given surface is steeper.

*
Support by the Air Force Office of Scientific Research is gratefully

acknowledged.
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GENERAL GRID GENERATION METHOD

Map problem domain onto unit cube in
computational coordinate space. Uniform,
rectangular grid in computer coordinates
gives curvilinear grid in original domain.

m
y c 8
C . . B
o
| o
Map S i il ~
Lo
A -~ - T— T -
l |
5 —rore-
| |
- 1 l [
X (o A ¢
Choose map to reduce truncation error of
finite difference solution scheme for
problem.

122



Problem: Find z(x,y) so that
= plx,y) in x2 + y? <
2 4 y2 =

() 2y T Zyy =
z = bix,y) on x

1.
1.

o

with p and b given functlons |
( § ) )

- fz
S = Jp

Change coordmates (x,y) —
gz, — fz | ez
o L 8 0
0¢ j an J
ds?2 = dx2 + dy2 = ed¢? + 2fdedn + gdn
. 2 2
f = XX, + YV,
g = xn2 + yn2
§2)1/2

i
®
i ‘Q

Truncation error of centered finite-difference approximation

_ 1 2 >
= 12 [92§§§£A5 toez,,,47
- 4f(zf§~an§2 + z&nnnAn]

Choose boundary- fittmg map to

(1) Minimize (f/j)?
(2) Reduce errors in separate

£ and u directions rrrrr

One- dlmenslonal monitor functnon methods are
satisfactory for (2). Boundary adjustment of

map used for (1).
*A. B. White, Jr., SIAM J Num Anal 16 (1979)
C. M. Ablow and S. Schechter, J. Comp Physics 27 (1978)
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One-dimensional monitor function takes equally
spaced values at mesh modes.

Simplest, effective, problem-dependent monitor
is distance on solution surface:

:—z- is to be constant as ¢ varles

(1) 5%(’(52 +y.?+2z,9=0
Same for 1) direction

@ tx,? +y,2 + 2,9 = 0

(1) and (2) plus glven differential equation (*)
for z determine solution when corner points
O,A,B,C have been chosen. Corners are moved
to minimize Y (f/j)2

t
I

(

Examples show grids found from (1) and (2)
for various given functions z having regions
of sharp variation (boundary layers). In
practice, function z and the grid mapping
would be found by simultaneous solution of
the complete set of differential equations

(1), (2), and (*).
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Level lines for z =
tanh[p(x cos 30 + y sin 30) + 0.5]

Equidistant mesh
p=1.0

Equidistant mesh

p=2.0

Equidistant mesh
p=4.0
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AN ELECTROSTATIC ANALOG FOR GENERATING CASCADE GRIDS

John J. Adamczyk
NASA Lewis Research Center

ABSTRACT

Accurate and efficient numerical simulation of flows through turbomachinery
blade rows depends on the topology of the computational grids. These grids must
reflect the periodic nature of turbomachinery blade row geometries and conform
to the blade shapes. Three types of grids can be generated that meet these min-
imal requirements: (1) through-flow grids, (2) O-type grids, and (3) C-type
grids. This paper presents a procedure which can be used to generate all three
types of grids. The resulting grids are orthogonal and can be stretched to
capture the essential physics of the flow. In addition, a discussion is also
presented detailing the extension of the generation procedure to three-

dimensional geometries.
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BLADE GEOMETRY AND COORDINATES L

The development of the grid generation procedure begins by considering the
electrostatic potential field generated by an infinite linear array of point
charges in a two-dimensional space. The density of the charges is assumed to
alternate between plus and minus l. The mathematical expression for the com-
plex electrostatic field is given by equation (1), where K(z - z5) is the com-
plex potential and 1 = V=1. For a Cartesian space z = x + iy, 2z, 1is the
location of the zeroth charge and s 1is the physical distance betwecen charges.
For a blade row whose geometry is given on a blade-to-blade surface of revolu-
tion, z =m + i0, where m isg the meridional distance and 8 is the angular
position; s then represents the angular distance between charges.

O
o +1
L I
S

Array of point charges

s}

K{(z - zo) = ES (-1)™ In(z - 2, - ins) ()

=0

- Blade-to-
blade sur-
face

Blade-to-blade surface of revolution. - 2%
showing m - 8 coordinates. E"?
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DEVELOPMENT OF EQUATION FOR POTENTTIAL FIELD SURROUNDING THE BLADE

The field equation for the array of point charges is expressed in closed
form in equation (2). Note that this expression is periodic in either the y-
or O-direction with period 2s. The potential field generated by distributing
the fundamental solution (eq. (2)) over the surface of a blade is given by equa-
tion (3), where Y(z,) 1s the source density distribution on the blade surface.
It is required that the real part of w (that is, &) be equal to 1 on the
blade surface (eq. (4)). At large distances upstream or downstream of the
cascade, &(z) 1is assumed to approach zero. This additional requirement 1s
expressed by equation (5). Equation (3) evaluated on the blade surface forms a
singular integral equation, equation (6), for the source density. Once Yy 1is
known, the potential field surrounding the blade can be computed by direct
integration of equation (3).

> (z = z)T

K(z - 2,) = HZOO (-1)" 1n(z - zg - ins) = ln tanh ——5 (2)
w(z) = fL Y(zg)K(z - z,)dzg (3)
Real w(z) = &(z) =1 (z £ L) (&)
Im L y(zg)dzg = 1 (5)

1 - Real [f Y(z)K(z - zo)dch (z ¢ L) (6)
L
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DEVELOPMENT OF EQUATIONS FOR SOURCE DENSITY DISTRIBUTION

The singular integral equations for Y can be solved by paneling methods
similar to those used in solving potential flow problems in fluid mechanics.
To employ these procedures, one first factors out of the integral equation its
singular behavior. (For eq. (6) the factored form is expressed by eq. (7).)
Next the blade surface L 1is divided into a series of segments. Over each of
these segments Y(zy) and ln[agfgiis}-tanh (z ~ zy) gg} are approximated by
polynomials in Zo- For the cases examined to date it was found that these
terms could be approximated by a constant equal to their value at the midpoint
of each segment. (This approximation assumes the length of the segment could
be made smaller than the scale of the local geometric blade features.) Thus
the singular part of equation (7) integrated over a segment is approximated by
equation (8), while the regular part is approximated by equation (9). The
auxiliary condition (eq. (6)) is approximated over a segment by equation (10).
Upon introducing these approximations into equation (7) and restricting the
value of Z, to the midpoint of each segment, a system of linear algebraic
equations is obtained from which Y(zo) can be determined.

(z - z)m
1 = Real f Y(zo) 1n e dz0
L

(z5) 1 2 h(z_zo)ﬂd1 (7)
+ Y(z n ————— tanh ———2 (4,
_/; o (z - Zo)T 2s o

b (z - 2 )T
f Vizg) In ———F—dz, = v(z)[(z -~ b) In (z - B)
a .

- (z-a) 1In (z - a) + b - é] _b+a
JlreTy
(8)
b (z - z )7
2s o)
J; Y(ZO) 1n (z - E;S%'tanh T3 dzo
(z - z )7
~ 2s o
o Y(zo)i}b - a) In ?z—:—zgjg'tanh 73 :} _bta (9)
255"
b
Imf Y(zo)dzo x Im[Y(zo) (b - aﬂ b+a (10)
a 2o~y
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BOUNDARIES OF COMPLEX ELECTROSTATIC FILLD SURROUNDING THE BLADE

the complex electrostatic field surrounding the blade sec-
tions can be found. The real part £ and the Imaginary part T of the field
form a periodic orthogonal body-fitted coordinate system. The contours

£ = Constant enclose the blade, while the curves T = Constant project from

the blade (i.e., & = 1) to the periodic boundary (£ = 0). The curves extend-
n = *L, respec-~

ing to upstream and downstream infinity are denoted m = 0,
tively. The locations of these bounding coordinate curves are found using a
Newton-Raphson scheme with equation (3) to numerically generate the inverse
mapping function. This procedure, however, because of its slow computational
speed, was not used to construct the interior grid contours.

Wwith vy known,

id

ORIGINAL PAVE IS
OF POOR QUALITY
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INTERIOR GRID

The interior grid points are constructed from the solution of the inverse
electrostatic problem in which (%,¥) or (m,8) are specified as functions of &
Oor N on the boundaries., The field equation for this is Laplace's equation in
terms of (£,n) (eq. (11)). The solution of equation (11) which satisfies
boundary conditions consistent with the coordinates of the bounding curvilinear
curves yields the interior grid geometry. This solution can be obtained by
either numerical or analytical procedures.

32 (x,m) + 52 (x,m) _

0
852 8n2
(11)
2 2
3 (Xém) L2 (Xée) .
& an
T £
£=1
(x,m) = £(n)
(v,8) = g(n)
_ (x,m) = h(&)
n= -t (v,0) = £(&)
'n=1
L -
£E=0
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GRID CLUSTERING

Crid clustering to capture the physics of the flow field can be introduced
prior to or after the solution of the inverse problem is obtained. To insure
orthogonality, the stretching functions used for clustering must be ome-
dimensional (i.e., egs. (12)). The § transformation can be quite arbitrary.
For potential flow computations, a linear transformation is generally used.

For viscous flows, one attempts to cluster grid points mnear the blade surface.
An example of a transformation which can be used for this purpose is given by
equation (13). The parameters Mg,M] control the degree of stretching in the
transformation. The clustering of grid points in the n-direction requires
special consideration to insure that grid point periodicity is maintained. A
grid point located on the periodic boundary at T = Ng has an image at
n=-n,. In order to maintain this property, the transformation in n must be
an odd function of 1N over the interval -L to L. A simple transformation
which exhibits this behavior is a polynomial in odd powers of fi, an example
being given by equation (14). The parameters M, and m; in this transforma-
tion are again used to control the degree of clustering.

= £ (0 <ESD
(12)
n = n(m (-L £H <L)
- w7 32 %3
£ =mf + (3 -m - m)ES + (mp + mg = 2)6 (13)
h = moh + (5 + dmg = M L3 - 2my - T (14)
2L 2L
L
#
1=
L -L
£
‘ >
1 é - L
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GENERATION OF C-TYPE AND THROUGH-TLOW GRIDS

Thus far the application of the grid generation procedure has been
restricted to orthogonal O-type grids. To generate through-flow and C-type
grids by the current procedure, the blade contours must be modified by append-
ing slits of zero thickness to their surfaces. For C-type grids, one slit is
used. TIts origin is generally taken to be the trailing edge of the blade. For
through-flow grids, two slits are appended, their origins being the leading and
trailing edges of the blade. The shape of these appendages can be quite gen-
eral. The generation of the grids associated with these modified blade pro-
files proceeds as in the O-grid procedure outlined above. The generated grids
are orthogonal and periodic. In the case of blunt blades, however, they
exhibit a singular behavior at the slit attachment point.

7
-
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© GRIDS FOR CASCADES

For cascades of nonzero stagger, the C-type or through-flow grids generated
by the current procedure are discontinuous across the slit. This undesirable
property can be corrected by a simple construction. First the two grid lines
connecting the upper periodic boundary and the trailing edge and the lower
periodic boundary and the trailing edge are found. Next the location and value
of n corresponding to the periodic image of A on the lower boundary (i.e.,
A') and B' on the upper boundary (i.e., B) are determined. The spacing of
grid points along the slit between EF is specified, which in turn determines
the distribution of n along both sides of the slit. This in turn determines
the distribution of 1 along the periodic boundaries AB and B'C'. The grid
points along A'B' are required to be periodic images of the points along AB.
This determines the distribution of n along A'B' and the grid geometry up
to EB'. The construction of the grid downstream of BrC' proceeds in the
same manner as outlined above, with the grid spacing along B'C' defining the
clustering pattern. The resulting grids will remain orthogonal and periodic
under this construction procedure.
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DEVELOPMENT OF THREE-DIMENSIONAL GRIDS

Three-dimensional grids can also be developed by the current procedure.
The geometry of a typical blade assembly as viewed in the meridional plane is
shown in the accompanying figure. Let the surfaces of revolution describing
the hub and shroud be denoted by r = fH(x), r = fs(x). A surface of revolu-
tion bounded by these limits is given by equation (I5). Similarly, let m
denote the percentage of distance measured from the leading edge of the blade
along the surfaces of revolution (eq. (16)). On a surface of revolution the
blade section geometry is given in terms of m and 0, where € is the
angular location around the wheel. On the blade surface of revolution m
and 6 can be expressed in terms of the coordinates &,n of the current
orthogonal system. The resulting coordinate system (Z,£,n) will be orthogonal
on a Z-plane and conform to the blade hub and shroud surface.

Shroud

r — fH(x)
- fs(x) - fH(x)

m
J’ ¢ ds
0 (16)

L
[ o

(fg S 1 < fg) (15)
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EXAMPLE O-TYPE GRID FOR TURBINE STATOR BLADE

M

An example of an O-type grid generated by the current procedure is shown
on the accompanying figure. The blade is a turbine stator with approximately
90° of turning. No stretching was introduced in developing the grid. 1In
regions of high surface curvature there is a high concentration of grid points,
thus permitting accurate resolution of the local flow physics. Far removed
from the blade, the concentration of grid points becomes sparse. This results
in an economical distribution of grid points in regions of uniform flow. The
grid as shown was generated to solve a potential flow problem. For viscous
flow, a stretching of the £ contours would have to be introduced to capture
the boundary-layer region. In additiom, the 1n 1lines would have to be
clustered in the trailing-edge region to resolve the viscous wake.

il

('l
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EXAMPLE THROUGH-FLOW GRID FOR A TURBINE ROTOR BLADE iiﬁ?

The next example is a through~flow grid for a high-reaction turbine rotor.
This grid, as described earlier in the paper, was generated by appending two
slits to the blade surfaces. The grid geometry is rectangular and periodic
upstream and downstream of the cascade. Across the wake the grid geometry is
seen to be discontinuous. The use of such a grid would require special care
in transferring flow variables across the slit.
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EXAMPLE C-TYPE GRID FOR A TURBINE ROTOR BLADE

The accompanying figure shows a C-type grid for the preceding turbine
blade. Upstream of the blade the grid geometry is gimilar to an O-type grid,
while downstream it resembles a through-flow grid. For this grid the con-
struction procedure outlined earlier was used to insure continuous grid geom-
etry across the slit. For potential flow analysis the grid as shown is quite
suitable. Tor viscous analysis a clustering of the grid lines near the blade
surface and trailing-edge region would have to be introduced to accurately
tesolve the flow physics.
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EXAMPLE C-TYPE GRID FOR CASCADE OF NACA 0012 AIRFOILS

The final example is a C-type grid for a cascade of NACA 0012 airfoils.
This grid was generated by When-Huei Jou of Flow Research. The grid generation
procedure as modified by him produces grids which are nearly orthogonal. The
slight noncorthogonality is due to stretching functions used to maintain con-
tinuous grid geometry across the slit and cascade periodicity. This grid was
generated to solve a two-dimensional potential flow problem. 1t can also be
used to solve a three-dimensional potential flow problem, provided the inviscid
wake is convected downstream along the slit. For viscous flow calculation a
clustering of grid points near the body and wake region would have to be
introduced.
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NACA 0012 airfoil. Stagger angle 30.00; pitch 0.794;
cascade grid 128 x 16.
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FINITE DIFFERENCE GRID GENERATION BY MULTIVARTATE
BLENDING FUNCTION INTERPOLATION®

CWI

Peter G. Anderson and Lawrence W. Spradley
Lockheed-Huntsville Research § Engineering Center
Huntsville, Alabama

ABSTRACT

The General Interpolants Method (GIM) code solves the multi-

dimensional Navier-Stokes equations for arbitrary geometric domains.

The geometry module in the GIM code generates two- and three-
dimensional grids over specified flow regimes, establishes boundary
condition information and computes finite difference analogs for use in

S — the GIM code numerical solution module. The technique can be classified

as an algebraic equation approach.

The geometry package uses multivariate blending function interpola-
tion of vector-values functions which define the shapes of the edges and
surfaces bounding the flow domain, By employing blending functions
which conform to the cardinality conditions the flow domain may be mapped
onto a unit square (2-D) or unit cube (3-D), thus producing an intrinsic

~— coordinate system for the region of interest. The intrinsic coordinate
system facilitates grid spacing control to allow for optimum distribution

of nodes in the flow domain,

The GIM formulation is not a finite element method in the classical
sense. Rather, finite difference methods are used exclusively but with the
difference equations written in general curvilinear coordinates. Trans-
formations are used to locally transform the physical planes into regions
of unit cubes. The mesh is generated on this unit cube and local metric-
like coefficients generated. Each region of the flow domain is likewise
transformed and then blended via the finite element formulation to form
the full flow domain. In order to treat ncompletely-arbitrary” geometric
domains, different transformation functions can be employed in different
regions. We then transform the blended domain to physical space and solve
the Cartesian set of equations for the full region. The geometry part of the
problem is thus tr eated much like a finite element technique while integration

of the equations is done with finite difference analogs.

*This work was supported, in part, by NASA Langley
Contracts NAS1-15341, 15783, and 15795.
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BUILDING BLOCK CONCEPT

The development is done in local curvilinear intrinsic coordinates based

on the following concepts:

® Analytical regions such as rectangles, spheres, cylinders,
hexahedrals, etc., have intrinsic or natural coordinates.

® Complex regions can be subdivided into a number of
smaller regions which can be described by analytic
functions. The degenerate case is to subdivide small
enough to use very small straight-line segments.

® Intrinsic curvilinear coordinate systems result in
constant coordinate lines throughout a simply
connected, bounded domain in Euclidean space,

® The intersection of the lines of constant coordinates
produce nodal points evenly spaced in the domain.

e Intrinsic curvilinear coordinate systems can be pro-
duced by a univalent mapping of a unit cube onto the
simply connected bounded domain.

Thus, if a transformation can be found which will map a unit cube uni-

i
il

valently onto a general analytical domain, then any complex region can be

C

piecewise transformed and blended using general interpolants.

Consider the general hexahedral configuration shown. The local intrinsic
coordinates are Ny» Mp» N3 With origin at point P;. The shape of the geometry
is defined by :

e FEight corner points, _151
® Twelve edge functions, fi

e Six surface functions, Si

This shape is then fully described if the edges and surfaces can be specified

as continuous analytic vector functions §i(x,y,z), fi(x,y,z).

144



i BUILDING BLOCK CONCEPT

Point Designations

. Edge Designations

w
M ¢. Surface Designations
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GENERAL INTERPOLANT FUNCTION

Based on the work of Gordon and Hall we have developed a general
relationship between physical Cartesian space and local curvilinear intrinsic
coordinates. This relation is given by the general trilinear interpolant shown

on the adjacent figure.

In this equation, z( vector is the Cartesian coordinates

X(T‘l’nZ’n:’))
X(Mpsmg.mg) = LAUETRPYL PY
z(nlsnzsn3)

and Si’ E; are the vector functions defining the surfaces and edges, respectively,
and _P-i are the (x,y, z) coordinates of the corner points. Edge and surface func-

tions that are currently included in the GIM code are the following:

e EDGES (Combinations of up to Five Types) € =

Linear Segment

Circular Arc

Conic (Elliptical, Parabolic, Hyperbolic)
Helical Arc

Sinusoidal Segment

e SURFACES (Bounded by Above Edges)

Flat Plate
Cylindrical Surface
Edge of Revolution
This library of available functions is simply called upon piecewise via input

to the computer code.

With this transformation, any point in local coordinates n 1 M2, N3 can
be related to global Cartesian coordinates x,y,z. Likewise any derivatives
of functions in local coordinates can be related to that derivative in physical

space,
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INTERNAL FLOW GRID
(Axisymmetric Rocket Nozzle)

The grid shown was used to compute the flow in a model of the Space
Shuttle engine using the GIM code. The mesh is stretched in the radial direc-
tion to cluster points near the wall and stretched axially to place points near
the throat of the nozzle. Only a portion of the complete grid is shown for
clarity and illustration. The grid shows the general format used by the GIM

code for internal, two-dimensional flows in non-rectangular shapes.

-
SS
=3
-
—1~,§
]
P
SN
1
Y
ey ¢
—-<-.,_~_‘
-_— 1
4 +
] S
1
I I N TIIxX
TR
s v ™ VR )
ORIGT L 2
p T £ )
O oA



I

EXTERNAL FLOW GRID
(Two-Dimensional Blunt Body Flow)

This figure shows a polar-like grid used for computing cxternal flow
over a blunt body. The body surface is treated inviscidly, and thus does
not require an extremely tight mesh. The outer boundary is the freestream
GIM code technique for two-dimensional ex-

flow. The grid illustrates the
ternal flows using a polar-like coordinate system.
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EXTERNAL FLOW GRID
(Non-Orthogonal Curvilinear Coordinates)

The nodal network for the external flow over an ogive cylinder illustrates
the capability of the GIM code geometry package to stretch the nodal distribu-
tion, The grid is very compact in the leading edge region and greatly expanded
in the far field areas. The axial points follow the body surface and could gen-
erally be called '"body -oriented coordinates" in the nomenclature of the litera.
ture. The radial grid lines are not necessarily normal to the lateral lines or
to the body surface. The GIM code, through its '"nodal-analog" concept can

operate on this general non-orthogonal curvilinear grid,
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THREE-DIMENSIONAL GRID
(Simple Rectilinear Coordinates)

_EU

bitrary cross section is a common

Supersonic flow in expanding ducts of ar

This figure illustrates a simple

w
B
<
g
>~
T
!
>
—i
Bt
—
]
<
o]
.t
-~
<
-
3
nmu.
o}
9]
=}
o)
[0}
8]
=
(V]
o]
S
a3
o
Q
(o}

s section varies sinusoidally with

_dimensional duct whose cros

grid for a three

v front’ wall have this sinusoidal

The "'top'" wall and the

the axial coordinate.

The grid shown

and "back’ walls are flat plates.

variation while the " bottom'’

intersection of the two shock sheets.
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THREE-DIMENSIONAL GRID
(Pipe Flow in a 90 deg Elbow Turn)

There are numerous flow fields of interest which conta

in a sharp turn
inside a smooth pipe.

The GIM code has treated certain of these for applica-

tion to jet deflector nozzle flow in VTOL aircraft. The portion of a grid shown

in the adjacent figure was used for this calculation.

The 90 deg elbow demonstrates the capability to model three-dimensional

non-Cartesian geometries. The internal nodes were emitted for clarity. The

elbow grid was generated by employing edge-of-revolution surfaces with circular
arc segments as the edges being revolved,

|
i |
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GRID FOR SPACE SHUTTLE MAIN ENGINE
(Hot Gas Manifold Geometry Model)

The recent problems encountered with the Space Shuttle main engine
tests have resulted in a GIM code analysis of the system. The '"hot gas mani-
fold! is a portion of this analysis for the high pressure turbopump system.
The grid shown in the adjacent figure was used for this calculation. Only a
small number of nodes are shown for clarity; the full model consists of approx-
imately 14,000 nodes. The extreme complexity of this geometry illustrates
the necessity of using a GIM-like technique. Transforming this case toa
square box computational domain is, of course, impossible, The results of
the GIM code analysis agree qualitatively with flow tests that have been run

on the hot gas manifold.

Hot Gas Manifold Configuration
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GRID FOR SPACE SHUTTLE MAIN ENG INE
(Hot Gas Manifold Geometry Model)
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SUMMARY

Finite difference grids can be generated for very general con-
figurations by using multivariate blending function interpolation.
The GIM code differcnce scheme operates on general non-

orthogonal curvilinear coordinate grids,

This schemec does not require a single transformation of the

flow domain onto a square box, Thus, GIM routines can indeed

treat arbitrary three-dimensional shapes.

Grids generated for both internal and external flows in two and

three dimensions have shown the versatility of the algebraic

approach.

The GIM code integration module has successfully computed

flows on these complex grids, including the Space Shuttle

main engine turbopump system.

Plans for future application of the code include supersonic flow
over missiles at angle of attack and thr ee-dimensional, viscous,
reacting flows in advanced aircraft engines. Plans for future
grid generation work include schemes for time-varying networks

which adapt themselves to the dynamics of the flow.
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Component-Adaptive Grid Embedding
E. H. Atta

Lockheed-Georgia Company

Introduction:

One of the major problems related to transonic flow prediction
about realistic aircraft configuration is the generation of a suitable
grid which encompasses such configurations. In general, each aircraft
component (wing, fuselage, nacelle) requires a grid system that is
usually incompatible with the grid systems of the other components;

thus, the implementation of finite-difference methods for such

geometrically-complex configurations is a difficult task.
veloped to treat such a

These

problem.

suited for a particular component.

divided into overlapping subdomains of different topology.
h a way that

grid systems are then interfaced with each other in suc
y are maintained.

In this presentation a new approach is de
The basic idea is to generate different grid systems, each
Thus, the flow field domain is

stability, convergence speed and accurac

(?WM
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Model:

To evaluate the feasibi1ity of the present approach a two-dimensional
model is considered (figure 1). The model consists of a single airfoil
embedded in rectangular boundaries, representing an airfoil in a wind
tunnel or in free air. The flow field domain is divided into two
overlapping subdomains, each covering only a part of the whole field. The
inner subdomain employs a surface-fitted curvilinear grid generated by an
elliptic grid-generator (ref. 1), while the outer subdomain employs a
cartesian grid. The overlap region between the two subdbmains is bounded
by the outer boundary of the curvilinear grid and the inner boundary of the
cartesian grid.

o
] _—»_.4. e ] | 4]
| | ] ] s .
| WL 25N - 4]
i i 05\
AmEE X i é
= LT
] % E =
H 1
: H
T S { :
; s T
] -t T
L 17 = &
X N
]
g 4 § A y
> ! J } T
NN “*é % - J
 Siagiines 11
-+ |
i 1T

Figure 1.- Composite grid for an airfoil.
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Approach:

Figure 2 shows the two subdomains (A,B) of the flow field;
each has a grid adapted to suit its geometry. The flow in both
subdomains is governed by the transonic full-potential equation.
While a Neumann-type boundary condition is used at the inner bound-
ary of subdomain B (overlap inner boundary), a Dirichlet-type
boundary condition is used at the outer boundary of subdomain A
(overlap outer boundary). These boundary conditions are updated
during the solution process. The implicit approximate factoriza-
tion scheme is used in both grid systems. The code of ref. 1 is
modified to fit into the present scheme.

The solution process is performed in cycles, starting by
solving for the flow field in subdomain A, then switching after a
number of iterations to solve for the flow field in subdomain B.
During each cycle the overlap boundary conditions are updated by
using a two dimensional second order Lagrangian interpolation scheme.
This process is then repeated until convergence is achieved in both

subdomains.
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Figure 2.- Grid topology for the different subdomains.
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Comparison with a homogeneous grid:

The results of the present method are compared with the results
obtained from using one homogeneous grid for the entire flow field
(ref. 1). 1In all the test cases considered, a standard grid with
(31 x 147) points and a circular outer boundary located 6 chord-
Tengths away from the airfoil are used. (See figure 3.)

Figure 3.- Uniform grid for an airfoil (ref. 1).
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Computed Results:

Results of the present method are compared with the results
obtained from the code of ref. 1. Two sets of parameters affecting
the performance of the numerical scheme are listed in tables 1 and
I1. Figures 4 and 5 display the pressure-coefficient distributions
for a NASA-0012 airfoil resulting from the flow field solutions.
The results are in good agreement for both subcritical and super-

critical cases; savings in computing time are achieved by reducing
the size of the flow field covered by the curvilinear grid
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(subdomain A).
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Flow Field Topology :

The extent of the overlap region between the different grids and
the relative size of each subdomain are the main factors affecting
the accuracy and convergence speed of the present scheme. Figure 6
shows the flow field topology for ceveral test cases. In these cases
the overlap extent and subdomain sizes are varied to determine their
optimum values that will minimize the computing effort, while maintain-

ing a reasonable accuracy.

T
[
l

|

!

]

T

I

1

T

[
[
I
i
T
!
!
L
-
1‘iTLLT’1
Tril

=
L
[
7
[
|
Ll
|
-y
£y
S2
1
j

|

)

|

|
N
5o

]
L

|

10

|

—
-
[
L
|
]
L
i
—EE
J =
LIY
T
I

Ll
-

1

T

1

1
I
T

Lo
[lJ_
T
i
T
5=
s tI:L
Y
1
T
| SR DT A
emsmm
t IL
T+
4 4.
s -rlll
i f
4 L}
T
o
| [
LTy
L
I f
Ll J i

T R
RUITEND,
I
Il

Ll

S
T T LT
e

1L

3

i
L

I
L
P*“

ST
g

gg?; Figure 6.- Flow-field topology with different grid-overlap.

R 1

PN
"—}FJ
TR X
=
1
f
_T‘I-Y(H’
1[‘»
L

163



ol

"papniouoy --g 4nbL 4

T ST T
A dy i
;]__ 1 w
o . WLITW‘_
. e
T
IWNW#~ Tt
IR e L1
T |
: =




!F'w

4

Overlap arrangement:

Test cases with different grids-arrangement are compared to

determine the optimum choice for the extent of the overlap region.

A work factor w [number of iterations for convergence X number

of grid points (curviiinear grid)] is taken as a measure of the
computing effort. Numerical results show that increasing the ex-
tent of the overlap region decreases the number of jterations for
convergence; however, this also increases the computing effort
(figure 7). To minimize the computing time the Cartesian grid
should overlap 15-25% of the curvilinear grid, and the inner
boundary of the Cartesian grid should not be located less than
0.25 chord-length away from the airfoil.

Wrx 103

Figure 7.- Effect of overlap parameters on work factor w.
(NACA-0012, M, = 0.8, o= 0.)
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Computed Results:

The use of nonoptimal parameters for grids arrangement (overlap
extent, relative grid sizes) can produce inaccurate results and/or
slow down convergence. The Peaky pressure coefficient distribution
shown in figure 8 is corrected by increasing the extent of the
overlap region described in Table ITI.

B '®) homogeneous qrid

® [J composite grid

ol+ '_O ‘O
® A7, PAE
® ARIGTHAL TF-
L %B
(o)
b X
.0 1 1 L qpn r
.2 4 6 8 |
Q
o)
-2k °
0
®
- Lk

Figure 8.- Comparison of pressure coefficient for NACA-0012.
(M, = 0.75, ¢ = 0.)
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Figures 9 and 10 display the pressure coefficient distributions
for two 1ifting cases for the parameters described in Tables IV and
V. The evolution of circulation, and hence 1ift, is slowed down as
the solution process alternates between the different grids. This
is dealt with by decreasing the number of iterations performed in
each grid.
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Figure 9.- Comparison of pressure coefficient for NACA-0012.
(M, = 0.63, o= 20.)
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Errors in sonic line position:

Should the shock wave extend into the overlap region, the
interpolation process can produce errors in the shock location
and strength. Comparisons of the results of the present method
with those of a homogeneous grid shows that the maximum relative
error did not exceed 1.5%. (See figure 11.)

homogeneous

P
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Figure 11.- Effect of interface location on sonic line position.
(NACA-0012, M, = 0.8, a =0.)
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Conclusion:

A method for interfacing grid systems of different topology is
developed. This offers a new approach to the problem of transonic
flow prediction about multiple-component configurations. The method
is implemented in a 2-D domain containing two grid systems of differ-
ent topology. The numerical scheme in the present method proved to
be stable and accurate. Savings in computer time and/or storage is
achieved by the proper choice of the overlap region between the differ-

ent grids.

Reference:

1. Holst, T. L., "Implicit Algorithm for the Conservative Transonic Full-
Potential Equation Using an Arbitrary Mesh," AIAA J., Vol. 17, No. 10,

October 1979.

1M



TABLE I

C

Code of Ref, i Present Method
TAIR Code
Curvilinear grid 31 x 147 15 x 147 21 x 147
Cartesian grid 30 x 30 30 x 30
% cpu time reduction
as compared to TAIR 30% 10%
Code
tocation of subdomain 6 chord- 6 chord-
B outer boundary Tength length
Location of subdomain 1 chord- 2 chord-
B inner boundary length Tength
Location of subdomain T chord- 4 chord-
A outer boundary length Tength
number of cycles for 9 10
convergence
TABLE II
Code of Ref. 1
TAIR Code Present Method
Curvilinear grid 31 x 147 18 x 147 14 x 147
Cartesian grid 30 x 30 50 x 50
% cpu time reduction
as compared to TAIR 20% 10%
Code
Tocation of subdomain 6 chord- 6 chord-
8 outer boundary Tength Tength
location of subdomain 1 chord- 1/4 chord-
B inner boundary Tength length
location in subdomain 2 chord- 1 chord
A outer boundary length length
number of cycles for 12 15
convergence
- BOM
MNAL PA~" -
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TABLE 111
Code of Ref. 1
TAIR Code Present Method
Curvilinear grid 31 x 147 10 x 147 15 x 147
Cartesian grid 30 x 30 40 x 40
Jocation of subdomain 6 chord- 6 chord-
B outer boundary Tength Tength
location of subdomain 1/4 chord- 1/4 chord-
B inner boundary Tength length
location of subdomain 1.5 chord- 1 chord-
A outer boundary length length
.~ TABLE IV
o S
Code of Ref. 1
TAIR Code Present Method
Curvilinear grid 31 x 147 15 x 147
Cartesian grid 30 x 40
% cpu time reduction as 397
compared to TAIR Code d
location of subdomain B
outer boundary 6 chord-length
Jocation of subdomain B
inner boundary 1 chord-Tength
location of subdomain A
outer boundary 3 chord-length
1ift coefficient 0.334 0.337
number of cycles for 16
convergence
173
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TABLE V

Code of Ref. 1

Present Method

convergence

TAIR Code
Curvilinear grid 31 x 147 21 x 147
Cartesian Grid 30 x 30
% cpu time reduction as .
compared to TAIR Code 2%
location of subdomain B
outer boundary 6 chord-Tength
location of subdomain B
inner boundary 2 chord-length
location of subdomain A
outer boundary 4 chord-Tength
1ift coefficient 0.574 .584
number of cycles for 14
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GRID AND METRIC GENERATION ON THE
ASSEMBLY OF LOCALLY BI-QUADRATIC COORDINATE TRANSFORMATIONS

A. J. BAKER & P. D. MANHARDT

UNIVERSITY OF TENNESSEE/KNOXVILLE,
AND CoMCo, INC, KnoxviLLE, TN

ABSTRACT

The generation of metric coefficients of the coordinate
in boundary

transformation from a generally curved-sided doma
(cube) is required for efficient solution

An algebraic

=
to the unit square

algorithms in computational fluid mechanics.

these data on the

procedure is presented for establishment of
union of arbitrarily selected sub-domains of the global solution
is

domain. A uniformly smooth progression of grid refinement
including multiple specification of refined
The

readily generated,
grids for a given macro-element domain discretization.
procedure 1is il1lustrated as generally applicable to non-simply

connected domains in two- and three-dimensions.

AFOSR-79-0005.

TResearch principally supported by USAF Grant No.
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COMPUTATIONAL REQUIREMENT

NAVIER-STOKES EQUATIONS

= 1 4 _3 =
L(qi) 3t T axj[ujqi * fij} 0

H
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2(q;)

COORDINATE TRANSFORMAT ION

X . .
i it xJ an, axJ
_ an _ an
gt o= [BXEJ Ug = Bxk Yj
J J

NUMERICAL SOLUTION ALGORITHM

T \ T
Se[{DETg}e[M3000]{QI}e - {UBARE}e[N3OKO]{QI}e

—{ETAEL}Z[M30£O]{FLI}Q] = {0)

DIscussion

The Navier-Stokes equations contain the vector divergence
Operator. The required transformation projects X onto nj with
coordinate surfaces defined coincident with solution domain
boundaries. The Cartesian description of dependent variables is
retained, while the convection velocity is expressed in contra-
variant scalar components. The numerical solution implementation

requires nodal distributions of components of the forward and

inverse Jacobians, and J, K, and L are tensor summation indices.
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TRANSFORMED DOMAIN

LOCALLY BI-QUADRATIC COORDINATE TRANSFORMATION

PHYSICAL DOMAIN
N (P OXT D,

ne

7,
;_-—#ﬁ

-

Two-Dimensional

(n)} transforms the vertex

Three-Dimensional

DISCUSSION
The bi-quadratic cardinal basis {N,
and non-vertex node coordinate description of a smooth region of
R"™ onto the unit square or cube spanned by the locally rectangular
Cartesian coordinate system 7. The inverse transformation J-1 is
non-singular for a range of non-midpoint definitions of the non-
vertex node coordinates (x}, yielding a non-uniform discretization
n

on R

c
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EXAMPLE: COMPRESSOR BLADE ROW L

Resultant Solution
Domain Coarse
Discretization

=
_71,
/'////

Macro-Domain
Discretization
Segment

Resultant Macro-
Domain Fine
Discretization

DIscussIon

Three of the ten macro-domains, used to form the blade row
discretization, are shown. The non-midside location of non-vertex
nodes produces the non-uniform grid, only a few gridlines of which
are shown. The inset illustrates a fine discretization of one
macro-domain. The coordinates of all nodes on boundaries of macro-

domains are unique.



DETAILS OF THE COORDINATE TRANSFORMATION

NoDAL COORDINATES {XI}:

Kooz (N ()Y DD,

WHERE :
(1 - n) (1 - na){-n1 - n2 = 1)
(1 + 1) (1 - n2)( n1 =~ n2 - 1)
(1 + ny) (1 # nz){( n1 + n2 - 1)
1 | (1 'ﬂl)“ +1’12)('ﬂ1+ﬂ?‘1)
Ma(n)3 = 7 1200 - ) (1 - ng) P
2(1 + ny) (1 - n})
2(1 - n2)(1 + ny)
2(1 - n1) (1 + n%)
JACOBIANS
J [axi} ( X1)
= :J Nes
30 J
30 .
J‘15{3;$}= H%Tj [cofactors of J]
= J-l(ﬂjs XI)
DISCUSSION

Within a macro-domain, the components of both J and J ! are

continuous functions of n3 and the global macro-node coordinate

pairs (triples) {XI}, 1T < I <n. Each global coordinate x, Ppos-

sesses an independent transformation; the corresponding Jacobian

must be of rank n to assure existence of J-l. Once the matrix

elements of {XI} are defined, selection of any coordinate (nys m2)

defines a unique coordinate pair (x1, X2), .., @ mesh point on

the refined grid in physical space.
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Crid Generation for Time Dependent Problems: Criteria and Methods

Marsha Berger, William Gropp and Joseph Oliger
Department of Computer Science

Stanford University
Abstract

We consider the problem of generating local mesh refinements when
solving time dependent partial differential equations. We first discuss the
problem of creating an appropriate grid, given a mesh function h defined over
the spatial domain. A data structure which permits efficient use of the
resulting grid is described. Secondly, we show that a good choice for h is
an estimate of the local truncation error, and we discuss several ways to
estimate it. We conclude by comparing the efficiency and implementation

problems of these error estimates.

WHAT ADAPTIVE MESH GENERATION FOR TIME DEPENDENT PDE'S

OBJECTIVES REDUCE # MESH PTS
MINIMIZE OVERHEAD
TRADEOFF: EXTRA PTS. VS. EXTRA LOGIC

REQUIREMENTS IR 10N INVI8 30v4 opIqromy
® MARCHING ALGORITHMS WILL BE USED
® COMPUTING TRANS IENT SOLN BY FINITE DIFF.
® TIMESTEP SMALLER ON FINER GRIDS, MESH RATIO CONSTANT
® GRIDS MUST CHANGE WITH TIME

® COARSEST GRID DOES NOT CHANGE WITH TIME
- Preceding page blank '#
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DESCRIPTION OF GRIDS

® LOCALLY UNIFORM

® RECTANGLES OF ARBITRARY ORIENTATION. EXTENS IONS TO
CURVILINEAR GRIDS FITS INTO SAME FRAMEWORK
® SUPPOSE BASE GRID G0 =V GO I FORM HIERARCHY OF
J *
NESTED GRIDS WHERE EACH REFINED GRID IS WHOLLY
CONTAINED INA SINGLE COARSER GRID

Gl=}/GL]

(g

V

® REFINED GRIDS CAN BE CONSTRUCTED AUTOMATICALLY
AT t=0 FROM INITIAL DATA.

HOW GRIDS ARE FORMED

GIVEN A "MESH FUNCTION" h(s,y) USED TO DETERMINE
WHERE TO PLACE REFINED GRIDS.

FLAG GRID PTS. WHERE h(x,y) > ¢.
—>® CLUSTER

® ORIENTATION
——® GOOD FIT ?




(‘W!Ml

CLUSTERING
(X x X X%

i

&P

® NEAREST NEIGHBOR
d(PT., CLUSTER) < dmax =
PT. € CLUSTER
® SPANNING TREES
CONNECT ALL PTS. ACCORDING TO SOME CRITERIA.

BREAK LONGEST LINKS,
« MINIMAL SPANNING TREES

« MINIMUM DIAMETER TREES

ORIENTATION

® FIT ELLIPSE TO FLAGGED PTS. OF A CLUSTER USING 1ST AND

2ND MOMENTS.
® USE MAJOR AND MINOR AXES OF THE ELLIPSE TO GET RECTANGLE
(REF: D. GENNERY, "OBJECT DETECTION AND MEASUREMENT USING

STEREO VISION") PROCS. IJCAL 1979, pp 320 - 321

ORIENTAT{ON.
® F|T MIN. BOX TO INCLUDE FLAGGED PTS. + SMALL BUFFER ZONE

FOR SAFETY.

GOODNESS OF FIT
® RATIO OF FLAGGED TO UNFLAGGED PTS.
® |F TOO LOW, RECLUSTER AND REFIT.

183



KEEPING TRACK OF GRIDS

NESTING SUGGESTS USE OF TREE STRUCTURE
(REF: KNVTH, "ART OF COMPUTER PROGRAMMING", VOL. 1)

/ L3 @
21 N[ 462 Go

INFORMATION FOR EACH GRID @

1) GRID LOCATION
2) SPATIAL AND TEMPORAL STEP S |ZES
3) SIZE OF GRID
2) 3 TREE LINKS ~
5) PTR. TO INTERSECTING GRIDS
6) MAIN STORAGE AREA PTR

POINTS TO NOTE

1) EASY TO HANDLE FAIRLY GENERAL REGIONS.

ALL THE WORK IN SETTING UP THE PROBLEM

IS IN SPECIFYING THE LOCATION OF THE COARSE
GRID AND ITS CONSTITUENT RECTANGLES. THE
REST IS AUTOMATIC.

2) EASYTO USE DIFFERENT METHODS ON DIFFERENT
GRIDS.
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WHAT IS h(x,y)?

WOULD LIKE TO EQUIDISTRIBUTE THE GLOBAL ERROR.

1D LINEAR THEORY SAYS IF CONTROL

(1) INITIAL ERROR
(2) BOUNDARY ERROR
(3) LOCAL TRUNCATION ERROR

AND METHOD IS STABLE FOR IBVP THEN THE METHOD CONVERGES.

(1) AND (2) CONTROLLED BY STD. MEANS
(3) CONTROLLED BY REFINING MESHES

USE LOCAL TRUNCATION ERROR FOR h (X, y).

REQUIREMENTS FOR LOCAL ERROR ESTIMATOR

® ACCURATELY MIMIC ERROR BEHAVIOR
® REASONABLY ACCURATE ESTIMATE - NOT NEC. A BOUND

® CHEAP TO COMPUTE
FLEXIBLE - EASY TO SWITCH INTEGRATORS

® THE FEWER TIME LEVELS THE BETTER.

awr
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POSSIBLE ESTIMATORS

DIRECT ESTIMATION OF TRUNC. ERROR

® FIND LEADING TERM

2 2
kK h™
€8 "¢ Vite * 6 Vixy

® ESTIMATE BY DIVIDED DIFFERENCES
PROBLEMS

® HARD TO FIND LEADING TERM
® HARD TO CHANGE INTEGRATORS
® NO CHEAPER THAN OTHER ESTIMATES

LOWER ORDER ESTIMATES
(Ve Vit)
® ESTIMATE SOLN. GROWTH IN TIME

® PROS - CHEAP, BETTER THAN GRADIENT ESTIMATES

® CONS - ACCURATE TRENDS BUT INACCURATE ESTIMATE
OF MAGNITUDE.

GRADIENTS
® USE Uy

PROBLEMS

® EASY TO FOLL (e.g. FORCING FN.)
® NO CHEAPER THAN Vy
® GOOD ONLY FOR SHOCKS
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DEFERRED CORRECTION

<
® COMPUTE ERROR ESTIMATE AS A FUNCTION OF THE 2 SOLUTIONS
CONS
EXTRA TIME LEVELS FOR 2ND METHOD

® USES 2 METHODS
DIFFICULT TO FIND 2ND METHOD AND

ERROR RELATION

- PROS
MOST ACCURATE
ESTIMATES TESTED

@ 2ND METHOD USES SAME INTEGRATOR WITH DOUBLE THE STEP SIZES

SPECIAL CASE (2h, 2k)
Vi k  Von, %

Pl

@ ERROR

USE OF DIFFERENTIAL EQ. TO ELIMINATE TIME DERIV.
f(u, x.t)x TO REPLACE TIME DERIVS. IN TRUNCATION ERROR

® USE Ut

PROBLEMS
® MESSY TO FIND Vttt
@ VERY PROBLEM AND METHOD DEPENDENT
@ USEFUL ONLY IF EXTREME PENALTY; FOR USING EXTRA TIME LEVELS.

o
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CONCLUSION

AUTOMATIC REFINED GRID GENERATION
® ARBITRARY ORIENTATION OF RECTANGLES
® LOW OVERHEAD OF GRID REPRESENTATION

® REFINEMENTS BASED ON ( 2h, 2k) ESTIMATES
OF LOCAL TRUNCATION ERROR
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E GENERATIONS OF ORTHOGONAL SURFACE COORDINATES™

F. G. Blottner and J. B. Moreno
sandia National TLaboratoriest
albuquergue, NM 87185

PLANE OF |

An orthogonal surface-oriented SYMMETRY {
coordinate system has been developed
for three-dimensional flows where the
computational domain normal to the
surface is small. With this restric-
tion the coordinate system requires
orthogonality only at the body surface.
The coordinate system is as follows:
one coordinate measures distance
normal to the surface while the other
two coordinates are defined by an
orthogonal mesh on the surface. One
coordinate is formed by the inter-
section of the body surface and the
meridional planes as illustrated in
Figure 1 and gives the 8 = constant
1ines. The other coordinate £, which
is nondimensionalized with a character-
istic length of the body geometry,
measures the distance along the body § STAGNATION
surface when 6 = 0. This coordinate ' POINT
system has been utilized in boundary
layer flows''? and for the hypersonic
viscous shock-layer problem.3 Figure 1. Surface Coordinate System.

§{ MERIDIONAL
| PLANE

Two methods have been developed
for generating the surface coordinates.
The first method uses the orthogonal
condition in finite-difference form to
determine the surface coordinates with
the metric coefficients and curvature
of the coordinate lines calculated
numerically. The second method obtains
analytical expressions for the metric
coefficients and for the curvature of
the coordinate lines. Both methods
assume the body surface is defined in
terms of a cylindrical coordinate
system where ¥ = r(x,8). The surface
inclinations ¢, and ¢2 as illustrated
in Figure 2 are determined from

ar Ar
tan @1 = (g;)e and r tan ¢2 = - (Sa)x

Figure 2. Angles ¢, and ¢. Defined in
the Cyli%drical Coordinate

and are known gquantities. System.

¥ This work was supported by the U. S. Department of Energy under contract
DE-AC04-76-DP00789.
+ A U. S. Department of Energy Facility-

CORIGIAL PAUT IS
OF POOR QUALIYY
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In the numerical method,!’? the
orthogonal condition for the surface
coordinates results in the relation

dx = X ds (along £ = constant)

where

A = r tan ¢, tan ¢2/(l + tan2 ¢l)

The equation of the surface provides
the relation

dr = tan ¢l dx - r tan ¢2 dae

The surface coordinate § is -determined
numerically from the foregoing
equations by assuming a value of d8
and marching away from 6 = 0 to deter-
mine the values of x and r. In
addition the metric coefficients are
determined numerically from

hg = ds/dg
hm = dt/dw
where
w = 6/27w
d52 = dx2 + dr2

dt” = dsz + r2d02

The curvature of the coordinate lines
1s determined from

1 ahg for w = constant
dw

K =

£ hghm
K . 1 ahw for £ = constant
w o hghw 3¢

with the derivatives replaced with mid-
point difference relations.

In the second method?, an analyt-
ical expression is developed for hw
as follows:

hw = 27r (1 + c_osz¢l tan2¢2)1/2

A differential eqguation results for

the other metric coefficient as follows:

190

(

9¢

£ _ 2 1

= 27r Ccos ¢l tan ¢2 (5;_)6
This equation is integrated along
£ = constant lines on the surface
from the initial condition hg =

1 at 0 = 0. The substitutiof of
foregoing equations into the
equations for K, and K give
analvtical expréssions for the
curvature of the coordinate lines.
In evaluating these relations,
the variations of x and 6 along
the £ = constant coordinate must
be known.

A sphere at angle of attack
as shown in Figure 3 is usegd
to illustrate the computation of
the surface coordinates with both
methods. The surface coordinates
on the sphere as viewed from the
side are illustrated in Figure 4.
The £ = constant lines result from
planes intersecting the sphere
with these planes passing through
the line which is normal to the
plane of symmetry and is located
at

fl
i

Vi1- (b/a)? .

x/a

(

(x/a)%/(b/a)

The metric coefficients for this
coordinate system are given in
Figures 5 and 6 with good agree-
ment between the two methods. The
curvature of the coordinate lines
is given in Figures 7 and g. It
is noteworthy that K, is independent
of £. The differencés evidenced
in Figure 8 can be partially
attributed to the numerical evalua-
tion of K being at one-half mesh
[
space locations away from the £
indicated.

1l

y/a

The numerical method of gene-
rating the orthogonal surface
coordinates has been applied to
ellipsoids, paraboloids and elliptic-
paraboloids. The coordinates on an
elliosoid are illustrated in Figure 9.
The second method or analytical
approach has only been developed for
the sphere.

it
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Figure 7. Geodesic Curvature of
Lines of Constant 8.
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Figure 9.

Surface Coordinates on
Ellipsoid (b/a = 1/4)

¢ 0 00 0 0 0 5 o o

Po.ruzs

El ot —

= 300 [e] Numerical

¢ o o o O 0 0 o o o 1.55851

\J;—o—o—‘-o—o——&__@_g_l_o__o__c) L.l
B 5 Y 115 IR

(Wuyrecs?

Figure 8. Geodesic Curvature of
Lines of Constant £.
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éi; An Adaptive Computation Mesh for the Solution of Sirxgul‘r"Ir
o Perturbation Problems

J. U. Brackbill and J. Saltzman
Courant Institute of Mathematical Sciences

An adaptive mesh for singular perturbation problems in two
The adaptive mesh is generated

and three dimensions is reported.
by the solution of potential equations which are derived by
minimizing the integral T, written,

_ 2 2 o )2
D= (L0 272y (e (77, TV (1)

D
ping from a parameter space

where x(&,n),v(E,n) represent a map
P, 0 <& <1, 0 <n < J, where wix,y) > 0 is given, Ay and Ag
is written,

are nonnegative constants, and J, the Jacobian,

_ 3(x,y)
J = 5E,m (2)

ucted by joining points
s of £ and n by straight
1 cells

the mesh is constr

teger value

B In the usual manner,
ly shaped, quadrilatera

in (x,y) corresponding to in
lines to form a net of arbitrari

(1) .
guivalent to Winslow's

The variational formulation is e
method (2) when Ag and Ay are zero. The Euler equations are
those given by Winslow, and their solution maximizes the smooth-
ness of the mapping. The additional terms modify other attributes

When A5 > 0 the mapping is
, the mapping

i
j of the mapping in a similar way.
: modified to make it mope orthogonal. When Ay > 0
more nearly constant over the mesh. BY

is modified to make wJ
choosing w(x,y) appropriately, and with Ay » Ao > 0 , the zone
gsize variation and skewness can be controlled.

In singular perturbation problems, control of zone size
he effort required to obtain accurate,

variation can affect t
numerical solutions of finite difference egquations. Consider
a simple, difference approximation,
8y - fi+1 - fi-1 (3)
- r
ax ¥ivl T Fi-1

where 1 corresponds to £ , 0 <i < I. In the usual manner,
the truncation error is written,
193
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2 3 o
€=%§—2fxgg+%g—§(x£)2+... . (4)
dx dx
When f is sufficiently smooth, ¢ is least when xgg = 0. However,
when f is given, for example,
' -1
f=(1+ exp(x/9)) v (5)
for which a%f/ax™ = 0(8™™) is not finite for § = 0, the error
€ 1is bounded only if (x§/d) < 1 in the interval -§ < x < §.
An equally spaced mesh with x sufficiently small satisfies this
requirement, but one with Xg E § only when -§ < x < § ; and
larger everywhere else satisSfies it with fewer mesh points.
With w(x) given by,
_ 1 d4f
w(x) = ‘ T 3= , ' (6)
minimizing the integral in Eq. 1 causes the mesh spacing to
approach that given by the equation,
l % gé Xg = const. ' (7) A
as AV increases. As a result, where w is largest the mesh
spacing is smallest, and vice versa.
Numerical results for a singular perturbation problem in
two dimensions are shown in the accompanying figures. A steady
solution to the equation,
22 4 e (ug) = kv2g (8)
'a‘.E by ’
is sought for small values of ¢ with u given. Such solutions
are obtained when the diffusion and convective transport are in
balance everywhere,
K
= =V . 9
u 3 ) (9)
When u is given by,
1 -1 -1 v g
us=-= (l+exp((r—ro)/|<)) (1+exp (= (r-r_ )/k)) r (10) S

194



the convective transport term is significantly different from
zero in an annulus of width k with radius rg. When w(r,98) is

¢

given by,
(11)

w(r,8) = u-u '

of the computation mesh are made smaller where |u]

the zones

is largest as shown in Fig. 1

2, the error in the numerical solution of Eg. 8
d by the maximum norm,

In Fig.
on the adaptive mesh as measure
(12)

1
= - <= >
max %?? ‘E 6 o> |
d with the error on a fixed rectilinear mesh. The
apting the mesh can be obtained, in

hreefold refinement of the regular mesh

€

is compare
accuracy obtained by ad

most cases, only by a t

in each coordinate direction.
used in calculations of resistive

The adaptive mesh has been
magnetohydrodynamic flow in two dimensions with the weight

; function,

4

(v x B/B)® .

The results indicate a significant increase in the maximum,

representable magnetic Reynolds number. The adaptive mesh
fluid flow problems with the

can be applied easily to other

appropriate choice of weight function.
The use of the adaptive mesh in time dependent flow problems

w_-_

will be discussed, and results will be presented.

Thames and C. Wayne Mastin,

1. Joe F. Thompson, Frank C.
J. Comp. Phys. 15, 299 (1974).
5. A. M. Winslow, J. Comp. Phys. 1, 149 (1966).
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Figure 1l.- An adaptive mesh with Yo equal to 1/4 and
K equal to 1/40 the mesh width. The cells are
concentrated in the region of maximum gradient.

fixed mesh

40% -

Maximun relative error
]
[
P
T

N

adaptine mesh

1/
50 1
Vs Ygo Uys Usg 1755 /20
i 1 1] 1 i 1
0.0 0.1 0.2 0.3 0.4 0.5
Average zone size( in inverse mesh widths)

100
|

Figure 2.- Similar scaling of the maximum relative error
with zone size obtained for both adaptive meshes (like
the one shown in Fig. 1) and fixed meshes, but many k_j
fewer zones are required with an adaptive mesh.
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A NEW COORDINATE TRANSFORMATION FCR TURBULEWNT
BOUNDARY LAYER FLOWS
J. E. Carter, D. E. Edwards, and M., J. Werle

United Technologies Research Center
East Hariford, Connecticut

ABSTRACT

te transformation for the finite-difference

A new self adaptive coordina
form

f turbulent boundary-layer flows is presented which permits & uni

solution o
ich extends across the layer.

mesh to be used in the computational coordinate wh
This coordinate transformation uses the local value of the skin friction coefficient
to scale the thickness of the wall layer region, and the local maximum value of
turbulent viscosity to scale the boundary-layer thickness. Results are presented
for two dimensional boundary layers in both positive and negative pressure gradients
and comparisons are made with experimental data and conventional variable-grid
results for low-speed turbulent boundary-layers. The cases chosen illustrate

the capability of this new transformation to capture the boundary layer growth

over the full extent of laminar, transitional, and turbulent flow with no grid

ad justment as well as its ability to consistently enlarge the wall layer region

for accurate shear stress representation. In addition, preliminary results of

mesh refinement studies using the new coordinate iransformation are presented.

YT NN A v
CRUSINAYL DAL T IS

s ¥

5
A . .
8 POOR QUALITY

<
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Figure 1. Introduction iﬁuﬂi

Current procedures which are used to generate the mesh across a turbulent boundary
layer require the specification of several mesh parameters which are generally difficult
to relate to the length scales of the flow itself. 1In addition, these length scales
vary as the solution evolves downstream thereby resulting in a mesh which although
"optimum" in one region, may be inappropriate in another. The objective of the present
investigation is to develop a procedure which simplifies the specification of the
grid point distribution across the turbulent boundary layer. It is desired to have
this procedure properly account for the growth of the wall layer as well as the overall
boundary-layer thickness. Since most flows are initially laminar at the start of the
boundary layer and then are followed by transition to turbulent flows then this
Procedure should be uniformly applicable to laminar, transitional, and turbulent flows.
The approach taken is to develop an adaptive grid technique based on known analytical
properties of boundary layer flows. This approach results in a coordinate transformation
which is based entirely on fluid dynamic concepts.

Objective

® Develop a procedure which:

* Simplifies specification of grid point L
distribution across turbulent boundary layer

* Properly accounts for wall layer and boundary
layer thicknesses

Approach

® Adaptive grid technique based on known
analytical properties of boundary layer flows
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Tigure 2. Grid Requirements for Turbulent Boundary layers
It is well known that turbulent boundary layers are characterized by two
transverse length scales, the boundary layer thickness and the wall layer thickness.
These two length scales generally are quite different in magnitude thereby making the
‘analysis of turbulent layers more complicated than laminar boundary layers where
generally only one length scale is present, the boundary leyer thickness. In addition
the wall layer and boundary layer thicknesses vary in the stream direction depending
upon the pressure gradient, wall boundary conditions, etc. 1In laminar flow it has
peen shown that when the boundary layer equations are expressed in terms of the Levy-
lees variables, the streamwise growth of the boundary layer is significantly reduced
thereby simplifying the numerical solution of the governing equations. Most turbulent
analyses also use the Levy-lees variables but since these variables do not. properly
capture the boundary layer thickness it is necessary to monitor the numerical solution
and add points in the outer region to accommodate the boundary layer growth. Also,
in order to provide adequate resolut f the wall and wake region and simultaneously
practically all aumerical approaches for turbulent
1ne mesh near the wall and a coarser mesh in the outer region
re two difficulties with this appro& 1) the initial choice
h as the wall and boundary
A new coordinate transformation was devised to
r growth and automatically scale the inner
form step to be used in the transformed

ion o
ch:

use as few grid points as possible,
and 2) the adjustment of this mes
schematically shown here, has the

boundary layers use a f
as shown here. There a
of the mesh distribution,
layer thicknesses vary downstream.
simultaneously capture the boundary laye
= wall layer region thereby allowing a uni
- coordinate, N. The resulting turbulent profile,
T appearance of a laminar profile when plotted in terms of N.
Laminar Levy Lees nr
« Monitor edge
growth - ,
] N
« Variable grid to il :3°““dadfye
resolve wall layer — | —layer edg
u
Coordinate N N4
transformation
aﬁAAhNV?ﬁAT
» Growth capture " = -
Boundary
* Automatic wall | layer edge
layer scaling
Vi ~ - 7SS
u

CW“W’"‘
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Figure 3. Capture of Turbulent Boundary Layer Growth %Ed?

The develcpment of the coordinate transformmation begins by first generalizing
the levy-Lees transformation for laminar flow to turbulent flow by using a reference
turbulent viscosity level to replace the laminar edge viscosity in these transformed
variables. For laminar flows the usual Levy-lLees transformation converts the
equations from physical variables to similarity variables such that even when the
flow is not self-similar the boundary layer edge is essentially constant in the
transformed normal coordinate. In the laminar case the normalized molecular viscosity
coefficient is 0(1) in the outer region of the boundary layer. For the turbulent case
this transformation is modified to normalize the turbulent viscosity coefficient to
0(1) in the outer region but is done in such a manner that the form of the equation
is unchanged from the laminar set. Thus in these transformed variables, in the outer
region, the solution for laminar and turbulent flow should be approximately the same
since the outer boundary condition (F=1) is the same for both, Therefore, since
these variables capture the boundary layer growth in laminar flow, the same growth
capture should ocecur in the turbulent case. The turbulent Levy lees transformation
is a generalization of that used by Schlichting in his Ph.D. thesis in 1930 to transform
the turbulent momentum equation for jets and wakes into a "laminar-like" form thereby
permitting the laminar similarity solution to be used for a turbulent flow. The
new turbulent levy Lees transformation can be used with any turbulence model provided
that a representative turbulent viscosity level can be identified. 1In the Present
work the two-layer algebraic eday viscosity model of Cebeci and Smith was used, in
which the reference turbulent viscosity is that for the outer layer. This value
varies only with the distance along the surface simce an intermittency function was
not used at the boundary layer edge. ¥

i

s PgYg rn p
= :—e.i ——
£ fopey.,eueds n _/; 7o dn

J2¢

Ffe=/'le ('+}%)ref

€ref =0 Laminar Levy Lees transformation
€ref 70 New turbulent Levy Lees transformation
- L _2¢ due
F =T, PeFigle (J'Z_E‘ +F175) R= e d§

Continuity: sze +F+Vp=0

PH
) - -2 —
Momentum: 2¢F Fe + VF, = B (l F ) + [Pef‘te F.,,]

where fy=p (l+ ﬁ)

vy
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Figure 4. Composite Coordinate Transformation

The use of the turbulent levy Lees transformation avoids the need to continuously
add or subtract grid points at the edge of the turbulent boundary layer due to
boundary layer growth or decay. However, & variable grid distribution is still
required, in fact now even more So, to adequately resolve the wall layer thickness
since it has been correspondingly reduced along with the boundary-layer thickness.
Clearly, an inner region transformation is needed to enlarge, in the computational
coordinate, the high gradient wall region. Fortunately, the analytical behavior of
the turbulent boundary layer profile is known in the wall layer region and this
information can be used as the basis for an inner region (wall layer) transformation.
Tt has been established numerous times both analytically and experimentally over the
past U0 years that the velocity varies with the logarithm of the distance normal to
the wall in the wall region. This relationship is not valid in the immediate vicinity
of the wall since it is singular and must be replaced with the laminar sublayer profile
where the velocity varies linearly with the distance normal to the wall. Hence a
logarithmic coordinate tyansformation could not be used if we want to solve the
equations all the way to the wall, which is desired in most boundary-layer analyses.
In a recent paper, Whiifield presented a new analytical expression for the velocity
profile in the wall region which also has the proper analytical behavior in the
laminar sublayer. This analytical expression is used in the present work in the wall
or inner region such that a constani increment in the transformed coordinate results
jn a constant increment in velocity. With the inner region coordinate transformation
established it is now necessary to specify a suitable transformation for the outer
or wake region. The outer coordinate transformation is motivated by the observation
that with the turbulent Levy Lees transformation discussed in figure 3, the boundary
layer edge is fixed and the governing equations closely resemble the laminar equations
in the outer region. lence the outer transformation is deduced from a function which
closely fits the Blasius solution. Whitfield found that this function closely fits
turbulent data in the cuter region which supports the idea that in this region the
laminar and turbulent solutions resemble each other. A composite transformation is
established by combining the inner and outer transTormations employing concepts from
the method of matched asymptotic expansions. The final result is that the semi-
infinite physical space o¢y<eis mapped into a unit interval 0¢N¢l in the computational
coordinate N, and that the transformation used is based completely on fluid dynamic
concepts to assure a universal applicability of the method. A sketch of the inner,
outer, and composite functions is shown to i1lustrate their relative magnitudes.

Inner region:
-} -
N, ~ g%\=k, cy, tan (ko JECr, 3)
1

« Analytical solution by Whitfield
« Correct in sublayer, u* = y*

Composite

ORIGINAL P70 1S

Outer region: OF POOR QUATITY
Ve - _
No ~“Le = tanh d (7 +7,)>
[
« Normalized viscosity implies Composite:
outer region is “laminar-like™ N.eN.+N_-N
=N.+N_-N.
» Good fit to Blasius solution cov o
+ Found by Whitfield to match * Matching condition N, = Ny/;
experimental data * Solve for 7,

3

/0
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Figure 5. Implement Coordinate Transformation w

(

The composite coordinate transformation Presented in figure L is incorporated
into the boundary-layer equations expressed in terms of the turbulent Levy lLees
variables which were discussed in figure 3. . The transformed equations are obtained
in a straightforward manner and are not substantially different from those in figure 3
other than the explicit dependence of the term aN/ag. These equations are solved
with a standard implicit finite-difference scheme in which a uniform mesh is used
in the normal direction. The use of the coordinate transformation results in less
than a 10% increase in computer time over that used by our UTRC computer code which
was recently developed using the variable grid finite difference scheme developed
by Blottner. This code has been used in the present work to provide calculations for
comparison purposes. This new coordinate transformation is an adaptive grid procedure
since it relies on two quantities, the local skin friction and the local reference
viscosity to complete the specification of the composite coordinate at each stream-
wise location. In the results presented here these quantities were obtained from
the solution at the previous station since a non~iterative scheme was used. This
adaptive grid procedure is applicable to laminar flows since the wall layer region
is nonexistent (hence N, = 0) and only the outer transformation is used. In transitional
flows the wall layer region is initiated at the start of transition and thus allows
for the natural development of the wall region as the flow evolves from a laminar
to a turbulent boundary layer.

® Finite difference solution of equations in £, N coordinates

(

® Adaptive grid — Cfe and (I +fi‘)ref depend on local solution

® Applies to laminar, transitional, and turbulent flow

Laminar — set N;=0

Transitional — inclusion of inner region initiated
at start of transition

Turbulent — composite transformation

C
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€ rFigure 6. Skin Friction Distribution - Flat Plate
This figure shows a comparison of the skin friction distribution obtained from
and the

Both predictions agree
In the present case 101 pcints were
Reduction

ealculations in which the composite coordinate transformation (adaptive grid)
variable grid (geometric progression) techniques were used.
The arrows indicate the locations at

well with the experimental data of Wieghardt.

used across the layer and there is no plottable difference in the results.
in the number of points from 101 to 21 resulted in essentially the same solution
using the adaptive grid; the same reduction for the varisble grid scheme resulted in

_{Adaptive grid, N =101,21
Variable grid, N =101

Variable grid, N =21
o Exp. data (Wieghardt)

Ree/m = 2.2 x 105

a slightly different solution as shown here.
which profiles from the different approaches will be compared.

0.006

e

0.005
0.004
= Cs Ug =33 Mis
= e 0.003 ©
0.002} 1
0.001}
0 1 | 1
0 1 2 3 4 5
s, meter
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Figure 7. Displacement Thickness Distribution - Flat Plate N

Shown here is a comparison of the displacement thickness distributions from the
adaptive grid scheme versus that measured experimentally. The agreement is good and
the solution is shown to change only a few percent when the grid is reduced. Similar
changes were found to occur in the variable grid scheme when the same grid reduction
was made. Detailed grid studies are presently underway in order to compare the
relative truncation errors of the adaptive grid scheme and the variable grid scheme.

1.0

0.8

0.6

d*, cm

0.4}
Adaptive grid =
—— N =101 points
—— N= 21 points

o Exp. data (Wieghardt)

I 1 I I

0 1 2 3 4 5
S, meter

0.2

"
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Figure 8. Velocity Profiles in Laminar Levy Lees Variables

In the next several figures flat plate velocity profiles at the locations
previously indicated in figure 6 will be shown in terms of the normal coordinate as
given by the laminar Levy lees transformation, the turbulent levy lees transformatim,
and the composite coordinate transformation. The present figure clearly shows the
two-layer structure of the turbulent boundary layer as well as the significant
boundary layer growth which occurs in this variable. Use of the laminar Levy Lees
transformation for turbulent flows is not significantly different than working in the
physical or untransformed coordinate. Also plotted is the Blasius solution which
is the laminar self-similar solution for a flat plate. Note that the Blasius solution
has a much smaller value of‘7eat the edge of the boundary layer than the turbulent
profiles despite the higher skin friction (slope at wall) in the turbulent case.

ulue

e 5=017m
—_———_Ss=46m
—— Blasius

30 40 50
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Filgure 9. Velocity Profiles in Turbulent Levy Lees Variable

This figure shows the same profiles in the new turbulent Levy Lees variable
and indicates that the turbulent boundary-layer thickness has been preserved in this
new variable and that it is nearly the same value as that of the Blasius profile. The
bar over the % -coordinate is used to distinguish between the turbulent Levy Lees
variable and the laminar Levy Lees variable as discussed in figure 3. Both variables
have the same form; it is only the interpretation of the ¢ -variable contained in the
7 -variable which distinguishes the two transformations. Despite the capture of the
turbulent boundary layer growth, it is seen in this Tigure that the high gradient
wall region still persists which requires a variable grid for adequate resolution.

1.0

0.8

0.6
ulue

-———=8=0.47m
—-— 8§$=4.6m
Blasius

0.2
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H B

oRIaETen Il
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%}’ Figure 10. Growth of Boundary Layer Thickness - Flat Plate
This figure shows a comparison between the streamwise variation of the boundary
layer edge as deduced in the laminar Levy Lees variable versus that obtained in
The ability of the turbulent Levy lees

tarms of the turbulent Levy lees variable.
variable to capture the turbulent boundary layer growth is clearly seen here.

40

30 -

——— Laminar Levy Lees
— —— New turbulent

Levy Lees
10
r 3
=
B
0 O T R S
0 1 2 3 4 5
- s, meter
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Figure 11. Velocity Profiles in New Composite Coordinate e ;

This figure presents the same profiles shown previously now plotted in terms of
the new composite coordinate, It is seen that this transformation results in an
enlargement of the wall region, and since the boundary layer edge is captured by the
turbulent Levy Lees transformation, the computed turbulent profiles show the same
0(1) variation across the layer as the laminar profile thereby permitting a uniform
mesh to be used. Tt is seen that in terms of this new composite coordinate the
turbulent profiles change only slightly over a flat plate distance of 4.5M, These
changes are greater in the outer region than they are in the inner which is probably
due to the more approximate outer coordinate transformation as compared to the use of
Whitfield's analytical solution for the inner transformation.

1.0
0.8}

0.6}
ulue
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--—=-s=0.17m
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0.2

] ] ]
0 0.2 0.4 0.6 0.8 1.0
N

208



(

ot i

"y

Figure 12. Edge Velocity Distribution

The previous example was a flat plate in which the imposed streamwise pressure
gradient is zero. It is well known that boundary layer flows are strongly influenced
by the pressure gradient and thus as a test of the new technique presented herein the
edge velocity shown in this figure was imposed as a streamwise boundary condition
on the boundary layer equations. This distribution was measured by Schubauer and
Klebanoff for the airfoil shown here and provides a good test case for the present
work since both regions of favorable and adverse pressure gradient are present.

1.0

0.8

Ug/ue —o— Exp. data (Schubauer
0.4 and Klebanoff)

0 | | 1 | l ]
0 4 8 12 16 20 24 28

Measurement surface

{Note: 1 ft = 0.3048 m)
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Figure 13. Skin Friction Distribution - Airfoil L

Comparison of the computed skin friction with that measured by Schubauer and
Klebanoff is shown here. Excellent agreement is obtained except in the aft strong
- adverse pressure gradient region where other investigators have concluded that there
are three dimensional effects which of course is outside the scope of the present
analysis. Comparison of the adaptive grid results with those obtained with the
variable grid show that both solutions are the same except in the adverse pressure
gradient region where the adaptive grid scheme shows better agreement with the data.
Both cases were computed with 101 points across the layer. 1In the present case the
computation does not extend to the Separation point so as a further test of the new
scheme an analytically imposed edge velocity was prescribed such that separation was
encountered. No difficulties were encountered in this case and both the adaptive
grid angd variable grid schemes yielded nearly the same result.

0.006 n
---- Adaptive grid
— Variable grid
© Exp. data (Schubauer and Klebanoff)
Ree /ft=9.8 x 105
0.004 Uy =160 ft/sec

0.002
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(Note: 1 ft = 0.3048 m)
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Figure 14. Growth of Boundary lLayer Thickness - Airfoil

This figure shows that the boundary layer edge is captured with the new turbulent
Levy Lees transformation for both positive and negative pressure gradients as was
shown in figure 10 for zero pressure gradient. A slight increase in the boundary-
layer edge is observed with the turbulent levy lees transformation in the adverse
pressure gradient region; however, this growth is negligible compared to that which
occurs in the usual laminar Levy Lees variable.

70

— Laminar Levy Lees
60 .-- New turbulent Levy Lees

50

40
Ne

30

20

10

coegemTrtTTT

00— 8 12 16 20 24 28

s, ft
(Note: 1 ft = 0,3048 m)
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Figure 15. Conclusions

In conclusion, a new adaptive grid procedure has been presented which automatically
captures the boundary layer thickness and simultaneously enlarges the wall layer
region through the use of a composite coordinate transformation. This new procedure
demonstrates the benefit of using fluid dynamic concepts in mesh generation for
numerical solutions since scaling problems and singular regions are Properly accounted
for, The adaptive grid scheme presented here is simpler to use than a variable grid
scheme since now only the total number of desired points needs to be specified by
the user. 1In addition, this adaptive grid procedure has been demonstrated to be
applicable to laminar, transitional, and turbulent flows.

® Adaptive grid procedure automatically captures boundary-
and wall-layer thicknesses

® New procedure demonstrates benefit of incorporating
known analytical properties of the flow into mesh
generation

® Adaptive grid procedure easier to use than variable grid
scheme since only total number of points must be specified

® Adaptive grid procedure applies uniformly to laminar,
transitional, and turbulent flows

212

e’

l
i

(



‘N81-14703

Generation of Orthogonal Boundary-Fitted
Coordinate Systems

Roderick M. Coleman

Computation, Mathematlcs, and Logistics Department
David W. Taylor Naval Ship Research and Development CenteY
Bethesda, Maryland 20084

ABSTRACT

A method is presented for computing orthogonal boundary-fitted
coordinate systems for geometries with coordinate distributions specified
on all boundaries. The system which has found most extensive use in
generating boundary-fitted grids is made up of the Poisson equations

+ P
Exx E:yy 1)

n,t+tn =
XX ¥y e

The functions P and Q provide a means for controlling the spacing and
density of grid lines in the coordinate system. Since all calculations are
done in the computational plane, the dependent and independent variables in
Equation (1) are interchanged, giving the usual transformed equations

-2 + + J2(px, + =
ax&é Bx&n on ( XE an) 0 (2)
- 2 -
oY g 26y5n + Y0 +J (PyE + Qyn) 0
where
= w2 4 y2 = +
¢ Xn yn B Xf;xn y«Eyn
- 2 + 2 J = -
v XE yﬁ Xﬁyn Xnyé

The condition for orthogonality, i.e., ¢ = constant lines perpendicular to
n = constant lines, is g = 0, because

p=0= xélyi - _yn/xn

which is equivalent to

17y, = -y
X
n = constant £ = constant

As a generating system based entirely on B, we consider

g =8 =0 (3)

£ n

which can have an orthogonal solution only when B = 0 at the corners of the
computational region. An iterative solution of the generating system given
in Equation (3) is applied successfully to several geometries. While questions
remain concerning the existence and uniqueness of orthogonal systems, the
generating method presented here adds to the available, useful techniques for
constructing these systems.
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Figure 1 provides a comparison of two grids generated for a square
region with nonuniform boundary coordinate spacing in both vertical and
horizontal directions. The nonorthogonal mesh showm in Fig. la was
generated using the Poisson System given by Equation (2) with P =Q=0.
Equation (2) was replaced with central difference formulae and the resulting
system was solved by successive overrelaxation (SOR). The orthogonal mesh
shown in Fig. 1b was obtained using Equation (3) as a generating system.
Equation (3) was expanded and each derivative was replaced with the
appropriate central difference formula. Again, the resulting system was

solved by SOR iteration.

T
H

g

-

71

e
HHE

(@)

g

(b) i

Figure 1
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Two 21 x 21 girds generated for a simply-connected region with
one convex boundary are shown in Figure 2. Fig. 2a shows a nonorthogonal
coordinate system generated by Equation (2) with P = Q = 0 (a Laplace
system); Fig. 2b shows a coordinate system génerated by Equation (3).
Note the orthogonality of the coordinate lines intersecting the curved
upper boundary in Fig. 2 and the resultant bending of these lines in the

interior.

)

/
H L1
///
L—1 |
/'/
/‘/
]
1
-
|
1t
,__#—
N

(a)

1

1
L]

|
R

N
|

|

L
|

I
R

Ll

I

L]

|
|
|

-+

f)l‘?q"t"'f" Y
! NS

[l 4

(b)

Figure 2

215



Figure 3 shows a region similar to that of Fig. 2 with a concave
rather than convex curved boundary. As before, Fig. 3a shows a Laplace-
generated grid and Fig. 3b shows a B-generated grid obtained using
Equation (3). The orthogonal mesh must have rather fine spacing near
the concave upper boundary to accommodate the curvature. To verify that
the fine mesh spacing in Fig. 3b is due to the geometry and not to a
singularity in the transformation, we have refined the mesh as seen in

the next figure,
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Figure 4 compares two different grids, ome coarse with 1681 points
and the other fine with 6561 points, generated for the concave region.
The fact that corresponding grid lines are in about the same position in
both meshes confirms that the coarse discretization yields a good

approximate solution to the exact problem. A further confirmation comes

from consideration of the Jacobian at the midpoint of the upper boundary.
The value of the Jacobian computed on the coarse mesh is nonzero and
agrees very well with the value computed on the fine mesh. There is no

indication of a zero Jacobian anywhere in the region.
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To demonstrate some of the problems that can arise, we attempted b
to generate an orthogonal mesh on a region similar to the previous one
but with greater curvature of the concave boundary. The grid shown in
Fig. 5a was generated by a Laplace system and the unacceptable grid in
Fig. 5b was generated by the system of Equation (3). To verify that a
mesh with crossing lines can also be produced by a Poisson system, we
computed directly the forcing functions P and Q using Equation (2) with
x and y as given in Fig. 5b. We then solved Equation (2) iteratively for
x and y using this P and Q, and regenerated the grid of Fig. 5b.
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Since this region is

As the final example, we considered a doubly-connected region

bounded by concentric circles as shown in Fig. 6.
symmetric with respect to any line passing through the center, each grid
alf the region and reflected in the line of symmetry.
0 at the corners of the computational

The symmetry line was treated as a boundary with fixed coordinate

was generatéd for h
The spacing on the outer boundary, but not on the inner boundary,

distribution, thus assuring that B =
Had the spacing on both boundaries been uniform, the grid
In Figs. 6a and 6b, the

region.
was uniform.
usual polar coordinate system which is orthogonal.
line of symmetry was taken as a horizontal line through the center of the

produced by the Laplace generating system (Fig. 6a) would have been the
The mesh of 6a was used as an initial guess for the iterative

figure.
procedure used to obtain the mesh of 6b.
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In Fig. 7, we show a B-generated grid computed for the same doubly-
connected region used in the previous figure. As before, the mesh of
Fig. 6a was used for the initial guess, but in this case the line of
symmetry was taken as a vertical line through the center. Interestingly,
the two orthogonal grids generated for the same physical region (Figs. 6b

and 7) are quite dissimilar because different points were held constant

after the same initial guess.

Figure 7
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NONLINCAR GRID ERROR EFFECTS ON NUMERICAL
SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

: 5. K, Dey
Department of Mathematics
Fastern Illinois University
Charleston, Illincis 61220

Absggggg

Finite differcnce solution of nonlinear partial differential
equations requircs discretizations and conseguently grid errors
are generated. These erroxs strongly affect stability and con-
vergence properties of Gifference models. Previously such errors
were analyzed by lincarizing the difference equations for solu-
tions. 1In this article properties of mappinge of decadence {1,2]
were used to analyze norlinear instabilities. Such an analysis
is directly affected by initial/boundary conditions. An algorithm
has been developed, applied to nonlinear Burgers' equation [3,4]
ané verified computationally. A preliminary test shows that

Navier-Stokes' egquation may be trcated similarly.

*This work has been supported by Minna-James-Heineman-Stiftung
Foundation of West Germany and by Eastern Illinois University.
The work was primarily done at von Karman Institute for Fluid

Dynamics, Rhode-S5T-Genese, Belgium.
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l. The Objective.

Let us consider a nonlinear partial differential eguation
du/at = L(u) (1.1)

where L is a one-dimencional differential operator in x. Let the
domain of integration be [a,b) ¥ [0,«). Equation (1.1) is subject
to certain initial/boundary conditions and it is assumed that the
problem is mathematically well-posed,

An explicit finite @ifference analog of (1.1) ie

u® = ru™ Y (1.2)
vhere, U" = (U; Ug . e U?)T EDc RI, (RI = the real I-dimensicnal
space), UQ = U(xi,tn) = the net function corresponding to u? which

is the true value of u at (xi,tn).

An implicit finite difference analog of (l.1) is: N
G(u™) = i, (1.3)
Also, F: D ¢ RY & D and so is G, It is assumed that the trunca-
tion errors are small and their effects are negligible.
Grid error is defined by
e = u" - gy, (1.4)
Stability is guaranteed iff v rfle™|| < R, where K is positive ang
arbitrarily chosen.
In this article an attempt will be made to see how one can
obtain, ¥ el £ pt
lim [|e"]] = o (1.5)
N«
c =



for given Ax (mesh size) and At (time step).

Obviously (1.5) guarantees stability. It also implies con-

vergence for steady state solution.

2. Mathewatical Preliminaries.

Let, ¥ n, z" &€ RT, and

n-1 (2.1)

Clearly, lim z" = @ iff

n+o

LimA_ A 4 ..o By S @. (2.2)

o no®

Now (2.2) is true if there exists a particular norm such that

¥ n >N

fa i < e <2 (2.3)

(These are diccussed in details in [2]1.) Under these conditions

(2.1) is said to describe a motion of decadence and An is called
a D-matrix.
1f instead of (2.1) the motion is given by

n n-1 (2.4)

it is a motion of decadance iff A;l is a D-matrix which is true

if
(A7M ) <o <2 : (2.5)

for some particular norm and ¥ n > .

It may be proved:

Theorem: 1 If Al is a lower triangular matrix andé

p(An) < a < 1, An is a D-matrix{ (p(An) = Spectral Radius of A_.)

C"‘ i
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Theorem: 2 If Al is a tridiagonal matrix and (i) for i # j,
n n . n _ n n n n
{aij] ]aii‘ and (ii) Xaii (ai,i-l ai—l,i/ai—l,i—l)I >1, ‘alll > 1,

A;l is a D-matrix. The same is true if A, 1s a bidiagonal matrix

with nonnull elements on the main diagonal.

3. BAnalysis of Discretization Irrors.

Let us consider (1.2). Let

F(u"™ 1) - pu™ Yy - A et (3.1)
Obviously, if a, is an element of A, a = a?.(un,Un). Then
ij n ij ij

the grid error equation for (1.2) is:
e = a e 1, (3.2)

Hence, (1.5) is true if An is a D~matrix.

If we express,

G(u™ - g™ = Anen (3.2)

then for (1.3), the equation (1.5) is true if A;1 is a D-matrix.
It may be seen that the effects of truncation error are total-
1y neglected in this discussion. Such effects were discussed in
121,
Thus, for an explicit finite ¢ifference equation, grid error
effects are damped out if An in (2.2) is a D-matrix; and for an
implicit finite difference equation, the same is true if An in

(3.3) is such that A;l exists and is a D-matrix.

4. Algorithm for Stability Analysis,

It is well known that for any square matrix An(I X 1)

i{l

i
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il

max |aj. (4.1)

: n
na 51 s Ia Il < T-max |aj,l
ij 1)

1]

for certain natural norms. Thus, for an explicit equation like

(1.2), (1.5) is true if

I-max |at.] ¢ « < 1. (4.2)
‘2 ij
1)

If in case Ar is a lower triangular matrix, Theorem: 1 may be

applied,

For an implicit equation of the form (1.3), if A is a tridi-

agonal matrix, grid error effects may be studied by using Thecorem:

2. A general analysis for An (or A;]) to be a D-matrix may be

found in [5].

5. Application.

Let us consider the inviscid Purgers' eqguation:

2 =
u, + (1/2) (w%) = 0. (5.1)
Let the initial conditions be:
u(x,0) = v, if x < ¥y (5.2)
= V2 if » > X1
V1 > V2

Let u, be approximated by a two-point forward difference for-

mula and (uz)x be approximated by @ two-point backward difference

formula. Then the difference approximaticn of (5.1) is:

n 2 L on, 2 n n
= - +
uy a(ui_l) a(ui) f uy T

1f u? is replaced by U: and 12 (the truncation error) is dropped,
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then using e® = ul - u?, we get: -
g i i if :
n+l n n n n n n
= + - + .3
ey a(ui_1 + Ui—l)ei-l (1 a(ui Ui)}ei (5.3)

where a = At/(2sx).

The linearized stability analysis requires:

a(2Vl) <1 (5.4)

“[. This inequality implies restriction on time

where V. = max |u]
1 i i

/N

step given by:

Lt < Ax/V,. (5.5)

In the present analysis (5.3) may be expressed as:

el o A e” (5.6)

Il
il

where An is a bidiagonal matrix having diagonal elements a?i =

C

1l - a(ug + U?) and elements below the main diagonal as a? i1 <
4

a(ul + U% ). Then by Theorem: 1, A, 1s a D-matrix if

i-1 i+l

max ]a?i] s a <1, ¥ n >N, (5.7)

If one chooses arbitrarily Vl = 1.3, V2 = 0.0, At = Ax = 0.1
(and X5 = x4), the linearized stability criterion (5.5) is violated,
although (5.7) is satisfied. Computationally, instabilities were
not found and the results given by fig. 1 seem to be guite cor-
rect,

Stability analysis of other explicit finite difference analogs
may be treated similarly or by using the inequality (4.1).

If both u, and (uz)x are approximated by two point backward



difference formulas, we get an implicit finite difference analog of
(5.1) and dropping the truncation error, the grid error equaticn
becomres:
n n n n n n n-1
- + = . .
a(ui_1 + Ui—l)ci—l {1 + a(ui + Ui)}ei e, (5.8)
Bere, A_ is a diagonal dominant lower triangular matrix and
lal;| > 1 ¥ n >N, Hence, the numerical scheme is unconditionally
stable by Theorem: 2.
Let (5.1) be expressed as:
u, +uu = 0. (5.9)
If u, is approximated by a two-point backward difference formula
and u_ is approximated by a central difference formula, the error
equation becomes:
n n n_n _ .n-1
i_l)}ei + alje, ; = € - (5.10)

~au®e® . 4+ {1 + a(u”
i 1~ bs
(Linearized stability cri-

Y
Actual computa-

1 +1
A is a tridiagonal matrix and considering the initial condi-
tions (5.2}, ]a?il }'l. Hence, Theorem: 2 cannot be applied. Thus,

Now if we change the initial boundary

Here,
stability criterion is not satisfied.
== terion is, however, unconditionally satisfied.)
tions showed instabilities.
conditions as: ul(x,0) = x, uf{0o,t) =0, u(l,t) = 1/(1 + t),
u, > u, v i and |a”,| > 1 with diagonal dominance, the im-
i+l i-1 ii
plicit scheme should now be unconditionally stable. Ziebarth (6]
verified it computationally.
equation in the vorticity-stream
227

A Remark on Navier-Stokes' Fquation.

6.
Let us consider Navier-Stokes'




function form as:

R N A R L (6.1)

vy = - (6.2)

where ¢ = vorticity and y = stream function. This coupled system
is subject to some specified initial-boundary conditions. If we
analyze the grid errors for implicit schemes we get two equaticns

of the form

n n _ - n-1 a
tbne + enf = e (6.3)
n _ . n
Anf = e (6.4)
vwhere e = grid error for r and f" = grid error for ¢ [7]. These

equaticns may be expressed as

Anen = e . (6.5) 7

It appears that if sharp discontinuities are Present neither in the
flow field nor on the boundary, conditions of Theorem: 2 will be

satisfied. Therefore, the inplicit scheme will be stable.

7. Conclusion.

If the sequence of matrices {A_} ke such that ¥ n,
UAnB < a <1, e will form a monotone decreasing sequence, where-
as if ¥ n > N, nAnﬂ <a <1, [[e"]] may show some oscillations before
it is camped out. 1In both cases, however, as n - = le®] » o.

For the linearized grid error analysis, A, = A ¥ n and if A is
a convergent matrix stability is obtaincd. Thus, linearized grid-

error theory is a particular case of the analysis presented here.
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. ] n : v :
Since elements of A are functions of u  and u"?, initial-

boundary concitions affect the properties of A .
In order to check that An (ox Agl) is a D-matriy, some infor-
nation regarding the nature of the solution must be known a priori.

This may be done mathematically or experimentally or both.
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Figure 1.- Explicit finite difference solution of equation (5.1).

ORIGINAL PP\I‘TI—S[
OF POOR QuaLi

230

(

it
i

ﬂ

o

h\



I

(!

%N31°1%?0§

GRID GENERATION
USING
COARSE, SMOOTH FINITE ELEMENTS

Lawrence J. Dickson
Department of Aeronautics
and Astronautics
University of Washington

I. Introduction
The grid generation problem lends itself to the use of finite elements

and variational equations.
(1) Grids are usually generated as smooth solutions to "nice,"

elliptic differential equations--just the equations well suited to

variational methods.
(2) The use of smooth finite elements gives the grid a functional
expression, which can be examined, evaluated, manipulated, and modified

naturally and cheaply.

(3) The “"grid equations
Exactitude of solutions does not matter as long as this is pre
cheap) finite elements may ggnerate a grid of

" are chosen for their qualitative character,
served. As

a result, extremely coarse (
high quality, if the boundary conditions are well parametrized.

I succeeded in demonstrating the following:

(1) Grid-quality solutions of a wide variety of equations--(
Laplace's, biharmonic, Helmholtz, even nonlinear--can be generated to fit
reasonable functional boundary conditions in 2D using very coarse rectan-
gular finite elements, often 6x3 ¢2 bicubic. 1 even tried some "wavy"

operators (with no natural variational expression) to demonstrate the
1 did not try the inverse Laplace equation, but

direct)

method's versatility.
I expect no problem but cost.

D5

231



(2) The finite element grids can be refined, Tocally modified and
"fine-tuned" using a simple, cheap composition-of-functions approach,‘
without having to solve the differential equation repeatedly.

II. The Finite Elements

Smooth, rectangular finite elements were used; the ones here are
c2 bicubic in the interior, For the 1inear equations, an option of ¢’
cubic boundary conditions with arbitrarily dense nodes was included. In
the examples shown there are, unless otherwise mentioned, six patches
"circumferentia]]y" and three “radially," of which only the innermost
ring of patches "radially" is plotted.

Where ! boundary conditions are used, second derivative discontinuity
in the "circumferential® direction is confined to the ring(s) of elements
meeting the (! boundary.

III. The Variational Expressions

Both Tinear and non-1linear equations are solved by minimizing a e

variational integral. 1In the non-linear case there is iteration.
Equations to fourth order (i.e., expressions squared in the variational]
integral to second order) are treated. In the case of the "wavy" Helm-
holtz equation H(f) = v2f + Kk2f = 0, the varjation integral for H*H ig
used with Dirichlet ("underdetermined") boundary conditions.

A variational approach to solving the inverse Laplace's equation is
known, but was not tried in this research. Other inverse equations (such
as biharmonic) could also be used.

Equation Variational Integrand
vf = 0 |2
vér - k%f = 0 |2 + k2f2
v2f+ k2 = 0 (v2F + k2F)2
vhr = 0 (vzf)2
vé(£2) = 0 |fof)?
= =
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The boundary conditions are always “Dirichlet-1ike" (Dirichlet for
second order, Dirichlet or Dirichlet + Neumann for 4th order), which
allows simple minimization of the integral.

Since the finite element grids were so coarse, solution of the
equations was by a one-step symmetric matrix solver.

IV. Fine-Tuning

The grids are defined by functional equations x = x(i,j), i and j
being "counting" variables. But the solutions to the differential
equations are x = x(s,t). It remains to define s(i,j) and t(i,j).

The simplest approach is to make them merely lTinear functions. As
a matter of fact, I imposed the boundary conditions s(iL,j) = const,
s(ig.j) = const, t(i,jB) = const, t(i,j1) = const, so that (s,t) lies
in a box; then I manipulated the interior values through transfinite
interpolation. If i is "circumferential® the maps are as follows:

)y —— ) ——— ) —— ()
i=u TFI FE
j = clu,v)
(unbroken cubic in v)

Where the F.E. solution has high skewness or is nearly singular, the
first map allows the requirement on the TF1 boundary condition needed to
mend this to be multiplied by a small constant, avoiding "grid folding."
A price is paid; the grid comes out Jooking irregular. It is better to
avoid the skewness in the FE solution itself, as by using the biharmonic

equation with perpendicular boundary conditions.

V. Conclusions

The finite element approach to gr1d generat1on has proved eminently
successful for linear grid equatlons Its coarseness is a very desirable
characteristic, most encouraging from the po1nt of view of extending it
to 3D. The wide choice of equat1ons--contr011ed by a small "black box"
determining the variational integrand--is another asset. So is the
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method's usability, at Tittle extra cost, with boundary conditions more 7
finely specified than the interior finite element grid.

Iterative solution of nonlinear equations increases the expense by
more than an order of magnitude, usually requires numerical integration
of the variational expression (often convenient in the linear cases too),
and makes it very difficult in general to apply finely-specified boundary
conditions. I think there are better approaches (see below).

The "fine-tuning" needs further refinement itself, especially in
handling variations in the normal velocity of the grid. Choosing the
grid equation to yield perpendicularity of the finite element grid map
(possible, for instance, with the biharmonic equation) is a help. Control
of "circumferential” grid density at chosen Tocations worked well.

VI. Future Directions

Algorithms should be derived to parametrize boundary conditions in
such a way as to yield good grids using direct (1inear) equations, such
as Laplace's or the biharmonic. The idea is to imitate the Riemann
mapping, by slowing down where convex (avoiding boundary overlap), and
speeding up where concave (avoiding "folds" in grid interior). This
should make use of inverse equations less necessary, and if done right
should be extendable to 3D.

The "fine-tuning" algorithms must be refined. They are in principle
applicable to any grid that can be described as a function.

For the inverse equations (for instance, Thompson's method), I
suggest use of Tinear paneling schemes in (x,y) space. The resulting
solution can be approximated by (s,t) finite elements simply by solving
for the (few) internal nodal values of (s,t) and using inverse function
theorem derivative evaluations. If the solution needs to be iterated,
Tinearized variational expressions using this as a starting point should
be cheap. Such a method might even have uses in linearized flow simula-
tion, as for cheap streamline tracking.

The method needs to be extended to 3D, adapted for "block" grids
(with the equations, if desired, being valid across block boundaries),
and adapted for vector computers.
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VII. Figures
The figures are true representations of the functions they illustr
although some “"handwork" was done on some of them to circumvent bugs in

the evaluation and plotting software.
A1l internal finite element grids are six circumferentially by

three radially, with only the innermost radial layer plotted, unless

otherwise mentioned.

(N
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Figure 1.- "Heart" - Laplace's equation was approximated, with
boundary conditions hand-parametrized to give a well-
conditioned if not unskewed grid.

ORIGINAL P2 I8
CF POOR. QU 1w

Figure 2.- "Joukowski" (Laplace's) - The natural, analytic parametrization

of a Joukowski airfoil was imitated by a six-node 2 cubic periodic
spline. Success in avoiding skewness was middling, as the insets .
show. "Radial" velocity at trailing edge was non-zero. A
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Biharmonic) - The biharmonic equation's
o enforce conformality in
kes the grid ¢l near

Figure 3.- "Joukowski” (
normal derivative condition was used t
S.

the 1imit exactly at boundarie

(This ma
the airfoil, and requires the “fine" boundary condition algo-
The insets show its success, and also that "normal”

rithm.)
velocity at TE is zero.

s

2" - The equation is v2f - k2f = 0, k = .65, with
and 0 < t € 3, radially symmetric boundary condi-
0 <t <1.4 is plotted.

r(t=3) = exp(w)

Figure 4.- "Helmholt
0<s=38/mS6
tions, r(t=0) = 1,

(@N&
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Figure 7.- "Fine tuning," Laplace - (A) = (1,3),
(8) = (u,v), (C) = (s,t) in the discussion of
Section IV. The wiggles in (B), due to skew-
ness, are present only to second order in (C).

Figure 8.- "Fine tuned" Joukowski (Laplace) - The result of
composition by the maps of Figure 7 is shown. (The "fine-
tuning" specifications were deliberately clumsy.) The
"shock densing" is good and the TE not too bad, but the

LE shows a nasty glitch where skewness had to be corrected.

The finite element map is that of Figure 2.
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(A)

(8)
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THIIAm

— a

Figure 9.- "Fine tuning," Biharmonic - Smoother than
Figure 7, since there is no skewness to be cor-

rected at the boundary.

7
\
1]
Figure 10.- "Fine tuned" Joukowski (Biharmonic) - Much better
than Figure 8 at the LE, due to lack of skewness at the
boundary in the map of Figure 3. The TE is not so good,
due to adjusting to zero "normal" velocity there, a defect
more easily correctable than the problem in Figure 8. J
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FAST GENERATION OF BODY CONFORMING GRIDS FOR 3-D
AXIAL TURBOMACHINERY FLOW CALCULATIONS

Djordje S. Dulikravich*
NASA Lewis Research Center

A fast algorithm has been developed for accurately generating boundary
conforming, three-dimensional, consecutively refined, computational grids
applicable to arbitrary axial turbomachinery geometry. The method is based
on using a single analytic function to generate two-dimensional grids on a
aumber of coaxial axisymmetric surfaces positioned between the hub and the
shroud. These grids are of the "0"-type and are characterized by quasi-
orthogonality, geometric periodicity, and an adequate resolution throughout
the flowfield. Due to the built-in additional nonorthogonal coordinate
stretching and shearing, the grid lines leaving the trailing edge of the
blade end at downstream infinity, thus simplifying the numerical treatment

of the three-dimensional trailing vortex sheet.

* E
NRC-NASA Research Associate, now a visiting research scientist at
DFVLR-Gottingen Universitat, F.R. Germany.
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The main objective of this work is to develop a fast algorithm for gen-
erating body-conforming three-dimensional computational grids. An equally
important objective is to preserve the high accuracy of the discretized re-
presentation of the solid boundaries. When analyzing steady flows thrcugh
turbomachinery rotors and stators, it is sufficient to consider a single
rotationally periodic segment of the flowfield. This segment is a doubly
infinite strip stretching in the direction of the axis of rotation. The
strip has a constant angular width of 2n/B where B is the total number
of blades. Each blade has an arbitrary spanwise distribution of taper,
sweep, dihedral and twist angle. The local airfoil shapes can vary in an
arbitrary fashion along the blade span. The rotor hub and the duct (or
shroud) can have different arbitrary axisymmetric shapes.

Such an arbitrary three-dimensional physical domain (Fig. 1) is first
discretized in the spanwise direction by a number of coaxial axisymmetric
surfaces which are irregularly spaced between hub and shroud.
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problem in generating the spanwise surfaces is an accurate
f the intersection contours between the irregular blade sur~
utting the blade. The coordi-
fined by fitting cubic splines
ial stations corresponding to

The major
determination o
face and the coaxial axisymmetric surfaces ¢
nates of the points on these contours are de
along the blade and interpolating at the rad
each axisymmetric surface T = Constant,

L iz

SN v
- Tl .
_ r(x) - ryx)
- N E
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boundaries

The two-dimensional grid should have the following features: (a) grid
cells should conform with the contour sha
ab and ¢cd, (b) grid should
8'~direction meaning that the grid
must have the sawrie respective

pe and the shape of the periodic
be geometrically periodic in the
1oints along the periodic boundary ab
x'—coordinates as the grid points along the

periodic boundary cd, (c) grid lines should not be excessively non-

orthogonal in the vicin

ity of solid boundaries,

from the trailing edge should end at downsteam i

should be concentrated in the regions of high f1l
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ow gradients.
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rsection contour on a particular cutting

Once the shape of the inte
axisymmetric surface is known, the problem becomes one of discretizing a
= x + 1i8.

doubly connected two-dimensional domain w =
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A grid with these properties can be most easily generated with the use o
of a single analytic function. One such function is

where 3 =X+ 16 and z =& + in. This complex function maps conformally
8 unit circle with a slit in the middle whose end-points are situated at

2 = tm onto the cascade of straight slits in the w-plane. Each slit has a
length 2. yhere

L = 4(cos 8 sinh-1 25—59575 + sin B sin ! 29—§£E§§>
1 -m 1 +m

The slits are spaced 27 cos 8 distance apart, where g8 is the stagger
angle of the cascade of slits.

+m /
wika »

v W = -cal (W = +o9
\
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The unit circle is "unwrapped' using elliptic polar coordinates (refs. 1
and 2) resulting in a deformed rhomboidal shape which is then sheared in the

horizontal and vertical direction (ref. 2) resulting in a rectangular (X,Y)
computational domain.

1]
i

247




cascade of unit circles which dre even more deformed. Consequently, more
nonorthogonality will be introduced in the transformation by additional
shearing of coordinates. A uniform grid in the (X,Y) plane which is symmet-
rically spaced with respect to the Y-axis, remaps back into the physical
(x,6) plane as an "0"-type boundary conforming grid. The actual radial
coordinates are obtained by fitting cubic splines along the elliptic mesh
lines and interpolating at a number of axial stations at which the radius of
the corresponding axisymmetric surface is known.

g r
1.57
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=4 The present method is equally applicable to the blades with blunt (or
rounded), wedge and cusp trailing and/or leading edge.

S (,
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A disadvantage of the present method is that it is not applicable for
the very thick, highly stagered blades which are very closely spaced. This

problem can be resolved by using a different form of the mapping function;
for example, one which maps a cascade of circles into a cascade of circular

arcs instead of a cascade of straight slots.
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A sample run shows that it takes 7.3 seconds of CPU time on an IBM 3033
to generate (x, y, z) coordinates of two 3-D grids and to write them on two
The first (coarse) grid consisted of 27x9x9 points and the

g{ p
separate disks.
second (refined) grid has 51x15x17 points.
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THREE-DIMENSTIONAL SPLINE-GENERATED COORDINATE
TRANSFORMATIONS FOR GRIDS AROUND
WING-BODY CONFIGURATIONS

Lars-Erik Eriksson
The Aercnautical Research Institute of Sweden (FFA)

ABSTRACT

In this work, a direct algebraic method has been developed and applied

to generate three-dimensional grids around wing-body configurations.

The method used is a generalized transfinite interpolation method which
generates the desired coordinate transformation using geometric data only
on the boundaries of +the domain of interest. The geometric data that can
be specified includes not only coordinates on the boundaries but also
out-of-surface parametric derivatives that give a very precise contrcl
over the transformation in the vicinity of the surface. In addition to
this, the method gives good control over the stretching of ihe mesh
between different boundaries.

The topology of the transformation chosen for the wing-body problem is
of a novel type which gives a grid that wraps around not only the
leading edge of the wing, but also the wing tip. The body is repre-
sented by a deformation of the plane-of -symmetry.

For mesh verification, a simple finite element type algorithm is used

to solve the Laplace equation (incompressible flow) on the mesh in
gquestion. By varying the details of the matrix evaluation process it

is possible to obtain solutions which are more or less dependent on the
global mesh properties and thereby get a measure of the "quality" of the
mesh. This is essential for applications where for example finite volume
methods are used, since these methods depend on smooth global properties

of the mesh.
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Fig. 1. Topology of wing-body transformation.

The topology of the transformation used for the wing-body problem is
outlined by these schematic figures. In the top left figure, the com-
putational or parametric domain is shown with u,v,w as arbitrary para-
meters. The top middle and right figures illustrate the first step in
the transformation, which is a "folding" process to obtain a wing-~like
inner boundary and an internal branch cut behind the wing trailing edge.
The next step is shown in the bottom left and middle figures and consists
of another "folding" process in the spanwise direction of the wing. This
results in the collapse of a surface into another internal branch cut
outside the wing and wake. The last figure shows the third and last step,
introducing the body. This is done by deforming the plane-of-symmetry
boundary and displacing the wing and wake appropriately.

"
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vn in both the parametric domain and
ametric

Internal branch cuts.
For actual flow computations in the par
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Fig. 3. Transfinite Interpolation

To generate the desired transformation, a generalized transfinite
interpolation method is used. This procedure (which alternately can

be viewed as a generalized spline interpolation procedure) gives a
transformation by interpolating geometric data from the six boundaries
of the parametric domain into the interior of this domain. The geometric
data needed for this method consists of coordinates and out-of-surface
parametric derivatives. With appropriate choices of coordinates and
derivatives it is also possible to generate some boundaries automatically

?
thus reducing the number of boundaries that have to be specified.
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f":\:w‘,( w,vwg 3 e tyla,v)

Fig. L. Application of the transfinite interpolation method
to the wing-body transformation.

This figure shows the parametric domain and the geometric data needed

to generate the wing-body transformation. The vector valued function
f(u,v,w) is here the desired transformation [x(u,v,w),y(u,v,w),z(u,v,w)]
and is specified only on three of the six boundaries: the plane w=w
(=the transformed wing and wake surface),the plane w=w, (=the transformed
outer boundary) and the plane v=v (=the transformed body and plane-of-
symmetry boundary). On the plane w=w; , there are also out-of-surface
parametric derivatives ﬁ:, ﬁx{, fim specified. These parametric derivatives
are essential to give a precise control over the transformation near

the wing surface and are also necessary to generate automatically the
geometric data for the remaining three boundaries. The choice of first,
second and third derivatives is arbitrary (it is possible to specify any
number of derivatives), but has been found to give good results.

To generate the transformation T(u,v,w) it is necessary ‘o introduce blending

functions #y(v); vy $ v € vp and yilw), yolw), yalw), va(w), ys(w); wp € w < wp

with conditions:

Bl(vl) 1 yy(wy) =1 yo(wy) = 0 Y3<W1> =0 YA(WI) =0 v5(wy) = O

1 1 1 H

B(vo) = 0 vylwy) = 0 yp(wy) = 1 v3(w) vy (w) y5(w) = O

Yi(w ) = 0 vilwy) =0 v3lw) =1 yj(w) =0 vs(w) =0
Tt

v"(wy) =0 y8(wp) =0 ¥3(wp) =0 vi(w) =1 v5 (w) = 0
yi(wy) = 0 vplwp) =0 v3lwp) =0 vy(wp) =0 vslwp) =1

1
il

The transfinite interpolation scheme is then defined by
1. ?*(U,V,W)==Y1(W)é1(u,v)‘*Y2(W)51(U,V)“fYB(W)El(u,V)-+Y4(w){1(u,v) +Y5(w>é2(u,v)
2. Flu,v,w) = THu,v,w) + By(v)[E5(u,w) - F¥(u vy w)]

The choice of blending functions has to be made with care, since they have
a direct influence on the 'stretching” of the transformation between
different boundaries.
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Fig. 5. Effect of out-of-surface parametric derivatives.

These three figures show the importance of the out-of-surface parametric
derivatives that must be specified on the wing and wake boundary. The top
figure illustrates the case where only the first derivative [x@,y%,z@] is
specified. This derivative determines the direction of the outgoing grid

lines (lines with constant u and v) and the spacing between successive grid
surfaces (surfaces with constant w). To obtain a univalent transformation,

the derivative must be adapted to the surface geometry and also vary smoothly.
An obvious way to adapt the derivative 1s to make it orthogonal to the surface
(middle figure). If the radius of curvature varies very rapidly however, this
simple solution does not work very well, because it requires an excessive
concentration of grid points in the critical region. A better solution is to
specify higher derivatives, for example [x%w,y&W,Z%W] and [Xﬁﬁw’yﬁ%w’z&%w]'
¥With these derivatives, it is possible to obtain a great variety of transforma-
tions near the wing surface. The bottom figure shows an example where the L e
transformation is approximately conformal in the vicinity of the wing. A
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7ﬁp
& = Fig. 6. Detail of typical grid in the leading edge/tip region.
In order to obtain the desired behaviour of the transformation in the leading
edge/tip region of the wing, it is necessary to specify the out-of-surface
s +h functions of both the in-surface parameters u
view of a typical grid in this region and
gradually collapse into the branch cut

parametric derivatives as smoo
This figure is an oblique
nereased towards the maximum

and v.
shows how the constani-v surfaces
outside the wing tip as the v-parameter is i

value.
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Fig. 7. Deforming the plane-of-symmetry to represent the body.

This figure shows the effect on the transformation of deforming the
plane-of-symmetry to simulate a half-body. The wing and wake surface
is translated outwards and the deformation is interpolated into the
domain in a smooth manner that is determined by the blending function
/%(v). Since the deformed plane-of-symmetry is specified in terms of
coordinates, it is also possible to concentrate the grid lines around
the body as shown by the figure.
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show from two perspective views:

T - the upper half of the wing and wake surface

- the upper half of the deformed plane-of-symmetry

— the internal branch cut outside the wing and wake

_ one of ihe downstream boundaries

— the constant-u surface that emanates from the wing leading edge

Figures 8(c) and 8(d) show a constant-v surface of the same grid as in
figure &(a). This surface emanates approximately from the mid section of

the wing.

Figures 8 } and &(f) show two constani-u surfaces of the same grid as in

Shown in figure 8 are scveral views of a wing-body grid. Figures 8(a) and 8(b

)

{
L e
figure 8(a). These surfaces emanate from the upper and lower x/c = 0.25 lines.

¢

(a) Wing-body grid viewed from below.

Figure 8.- Wing-body grid.
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(b) Wing-body grid viewed from above.

Figure 8.- Continued.
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(d) Enlarged view of grid at wing surface.

Figure 8.- Continued.
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(e) Planar view of wing-body grid perpendicular
to the body axis. -
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(f) Enlargement of planar view,

Figure 8.- Concluded. N
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AN INVESTIGATION INTO GRID PATCHING TECHNIQUES*
C. R. Foréey, M. G. FEdwards, and M. P. Carr
Aircraft Research Association

Manton Lane
Bedford, England

ABSTRACT

In the past decade significant advances have been made using flow field

methods in the calculation of external transonic flows over aerodynamic
contigurations. It is now possible to calculate inviscid transonic flow
over three-dimensional configurations by solving the potential equation.

However, with the exception of the Transonic Small Disturbance methods

F

"Q§%§ which have the advantage of a simple cartesian grid, the configurations

I : over which it is possible to calculate such flows are relatively simple

E (eg wing plus fuselage). The major reason for this is the difficulty of

; producing compatibility between grid generation and flow equation solutions.

t The main programs in use, eg Jameson in US and Forsey in UK, use essentially
analytic transformations for prescribed configurations and, as such, are not

easy to extend. Whilst there is work in progress to extend this type of

system to a limited extent, our longer term effort is directed towards a

more general approach. This approach should not be restricted to producing

grid systems in isolation but rather a consideration of the overall problem

of flow field solution.

This paper describes one approach to this problem.

*This work has been carried out with the support of Procurement Executive,
Ministry of Defence.
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GRID GENERATION

GENERAL APPROACH

Grid generation, or equivalent, vital to solution of generat
flow field problems.

2. It is not obvious which technique to use.
3. Various methods being explored
a) Non-aligned grid Catherall R.A.E
b) Aligned grid with globa! solution for Roberts  British
grid with control function Aerospace
C) Aligned grid with local grids Forsey AR.A
patched together
FIGURE 1 GENERAL APPROACH TO GRID GENERATION
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1. GENERAL APPROACH TO GRID GENERATION

Accepting the requirement to solve a set of discretised partial differential
equations on the nodes of a suitable grid, then some method of grid generation

is vital. Since there are a number of ways in which one can tackle this

problem and, at the moment, no 6ne technique apbéars sufficiently superior to
others, it would appear judicious to attempt more than one approach. Therefore,
a program of work is being undertaken in various UK establishments to investigate
suitable techniques and tﬁe method described in this paper is part of this

overall project.

Probably the first question one poses when considering the requirement of a
computing grid is whether or not to align the grid with the surface. Catherall
at RAE is investigating the non-aligned grid concept. The grid, being cartesian,
can be generated in a straight forward manner with the major problems being the
complicated application of boundary conditions and the general 'housekeeping'

for complex configurations. However, extra components can be added fairly

easily and it should be versatile.

1f an aligned grid is considered mandatory then the application of boundary
conditions becomes much simpler and grid generation becomes a major problem.
Roberts at British Aerospace is attempting to produce a method of grid generation
for general three-dimensional configurations by producing a global solution of a
set of partial differential equations. The introduction of mapping singularities
is used to control the distribution of grid points using discretisation based on

triquintic splines.

The work described here investigates a method some way between these two
techniques. The requirement for an aligned grid system is accepted but with
the flow field divided into segments, each segment with its own rather straight
forward grid system. The surface boundary conditions are easy to apply but

the main problem is one of solving the flow equations through the boundaries
where the segments are patched together, This approach will now be described

in more detail.
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define the four sides as parametric functions of s and t .

FIGURE 2 BASIC ISOPARAMETRIC MAPPING
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‘ 2. BASTIC ISOPARAMETRIC MAPPING

The patching technique consists of splitting up regions of interest into a

series of quadrilateral segments which are patched together across common

boundaries. For the grids in each segment any convenient method of grid

generation may be used. However, as it is necessary to match the grids

o across common boundaries and to maintain some control over the grid spacing
— in these regions, which is most conveniently done using interactive graphics,
a grid generation technique combining simplicity with minimal computer

requirements is needed.

One such method, which has been used extensively in finite element work, is
the isoparametric or blending function method. This method consists of
defining the x and y coordinates of points within a quadrilateral as
parametric functions (f) of two parameters (s,t) where s = 0,1 and t = 0,1
define the sides of the quadrilateral in parametric space. If the values of
f are defined along s = 0,1 and t = 0,1 (ie the point distributions along

.~ the sides are prescribed) then the blending function f defines internal points
as a smooth blending between these boundary values. Taking equal intervals

in s and t then defines the grid lines within the quadrilateral.

The values of f along s = 0,! and t = 0,1 are defined by cubic spline curve
fits of f vs.s or t where s and t are taken as the arc lengths along the

appropriate sides.

The blending function used in the present patching method is the lowest order
blending function which is a bilinear blending. However, higher order blendings
(eg cubics) could be used with very little increase in computing time and the
extra degrees of freedom then used to define the shape of some of the internal

grid lines or the slope of the grid lines at the boundaries.
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FIGURE 3 STRETCHED ISOPARAMETRIC MAPPING
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3. STRETCHED ISOPARAMETRIC MAPPING

The basic isoparametric mapping produces grids which vary smoothly between
opposing sides of the quadrilateral. However, for equally spaced intervals

in parametric (s,t) space the corresponding grid lines in physical (x,y)

space, although curvilinear, are still equally spaced. It is convenient to
have the facility for packing grid lines near specific quadrilateral boundaries

or near the middle of the quadrilaterals.

Hence, preliminary stretching transformations are applied to the s and t
coordinates. One simple stretching which gives considerable user control is

to make s and t cubic functions of some other parameters § and t. Taking

equal intervals in § and t then results in unequally spaced intervals in s and t.
By appropriate choice of the derivatives ds/ds and dt/dt at each end of the cubic
it is possible to pack points towards either end (one value of ds/ds < I, the
other value > 1), towards the middle (both values of ds/ds > 1), or towards both

ends (both values of ds/ds < 1).

For all cases except the last a single cubic appears adequate. In the last case,
however, attempting to pack points towards both ends usually results in a grid
which has very fine spacing near both ends but which then suddenly jumps to much
wider spacing near the middle. This seems to be due to an inability to control
the slope of the cubic near the middle where the slope remains much the same
regardless of the slopes imposed at each end. One solution which we are currently
using for this case is to replace the single cubic by a cubic spline curve through
4 points. The slopes are still specified at the end pair of points and the middle

pair of points are chosen to control the slope of the curve near the middle.

In practice, the stretching parameters (ie ds/d5 and dt/dE at each end plus the
two middle points for the cubic spline stretching) are chosen interactively by

the user with the aid of interactive graphics.

1n order to increase flexibility still further different values of the stretching
parameters can be specified on opposing sides of the quadrilateral and a linear
variation between these values is used for all internal grid lines between these

two sides.
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4. PATCHING SCHEMATIC

Individual segments, each with their own local ieoparametric grids are

joined (or 'patched') along commnon boundaries until the whole region of
interest has been covered. Grid lines in two adjoining segments must meet

on their common boundary which implies that the same number of points and

the same stretchlng functions are used on both sides of this boundary.
However, the grid lines may change direction through this boundary, i.e. they
need not be smooth. Instead, special boundary conditions are applied on
patched boundaries to ensure flow continuity. Sides of segments corresponding

to solid surfaces or free stream COﬂdlthﬂS also have approprlate boundary

conditions applied.

Since maximum flex1b111ty is requlred wﬁen ch0051ng the way the region of
interest is split up into segments, it is necessary to allow any side of

one segment to patch to any side of an aaj01n1ng segment. Two typical patches,
designated (1,1) patches and (1,2) pate;eeyare illustrated and there are

several others. 1In principle, different types of patch should not significantly
increase the difficulty of applying the appropriate patch boundary conditions.
However, in practice they con31derab1y 1ne;ease the general program housekeeping

needed and in the current program not all types of patches have been allowed

for as yet.

At present the way the region is divided into'segments is controlled by user
input although eventually it is hoped to (at least partially) automate this
process. Initially, all solid surfaces (eg aerofoil surfaces etc) are defined
accurately and then the user defines the segment boundaries, some of which are
parts of solid surfaces and some separate hand drawn curves. A schematic
showing a typlcal setting up procedure for an inlet with central bullet is

“the type of each patch are

shown. The orlentatlons ot each s

indicated on the schematic.
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5. EXAMPLE OF GRID — INTAKE

When the region has been divided into segments to the user's satisfaction,

the mext step is to define the number of points in the s and t directions
This gives a

and the corresponding unstretched grids in each segment.
general idea of what the final overall grid will be like. An example is
the s and t coordinates in each

given at the top of Fig 5 for the intake with central bullet.

emove sudden changes in the width of grid intervals (particularly
The
Approximately two days

Various stretchings are then applied to
across patched boundaries) and to pack grid lines in regions where the flow
The stretching parameters are modified, and the

is expected to vary rapidly.
final overall grid is shown at the bottom of Fig 5.
work was required to produce this grid from scratch and only a small amount
e may be useful,

segment to r
resulting grids displayed, interactively using a graphics terminal.
omputer time was required on a modest Prime 400 computer linked to a

the easiest way to ensure

of ¢
in

Because of the nature of the blending functions used,
that grid lines are approximately normal to solid surfaces is to choose the
ch boundaries which join such surfaces to be nearly normal to
Furthermore,

Tektronix 4051 graphics terminal.

A few comments regarding the choice of segments for this exampl
shape of the pat
the surfaces concerned as has been done in segments A and F.
order to accurately model the cowl surface boundary condition and the channel
flow between the cowl and the bullet, a fine inner grid is patched to a sparse
outer grid but stretchings are used to ensure that a sudden change in grid

spacing does not occur at the patch boundaries.
It will be noticed that at one point five patch boundaries (ie grid lines) meet
We feel that this should give no particular problems
re no flow singularities.
point of the

especially if the point is in a region where there a
275

rather than the usual four.
(There is some evidence that putting such a point at a stagnation

flow can lead to difficulties).



276

grid type 1

grid type 2

FIGURE 6 EXAMPLE OF GRID- CASCADE
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6. EXAMPLE OF GRID - CASCADE

The region of interest may be divided into segments, under user control, in

any number of ways and Fig 6 illustrates two different grids for a typical
cascade flow problem. The generating segments are marked on each grid. In

the two cases different numbers of segmenfs are used with individual segments
having quite different shapes. Although there is no restriction, in principle,
on the number of segments which may be used, there is some evidence that, at
the current stage of development, the convergence rate for the solution of the

flow equation decreases with increasing numbers of segments.

The top grid shows the first attempt at a cascade grid. In this attempt the
main criterion in choosing the segmentp was to produce a fine grid spacing
around the leading edges of the two aerofoils, a region where many previous
cascade grids have been deficient. Again, notice that at one point five patch

boundaries (ie grid lines) meet rather than the more usual four.

However, after producing this grid it was realised that it would be impossible
to use periodic boundary conditions across the two lines upstream of the leading
edges of the two aerofoils without some form of interpolation. This was because
the upper and lower lines are formed by different combinations of segmert
boundaries and hence have different numbers of points and different point
spacings. The same argument applies to the two lines downstream of the trailing
edge of the two aerofoils. Since neither pair of lines is intended to represent
actual streamlines, periodic boundary conditions are the only correct boundary
conditions which may be applied across these lines. Hence, the lower grid was
produced to try and overcome this restriction without significantly compromising

the other advantages of the first grid.

This perhaps illustrates the interactions between grid generation methods and

flow calculation methods as the two cannot really be studied independently.
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GENERAL TENSOR _FORM OF THE FULL POTENTIAL EQUATION o

(c2-g2) vivj_a,i?;_ +c2 (ngij'vivj)_ii&_* €292 3¢ a_ (vygil)
artar) ariar g arl ar

-q2vi Vi% Qg_ji- q2vivl a2 = ¢

2 ari arlar!
rizcoordinates in transform space (rl=r, r2=zg r3zt)
¢ = perturbation velocity potential (§=g¢+x)
c221 + (¥Y-1) (1-q2) = square of local speed of sound

Mad 2
g = determinant (gij )
g'l= cofactor (gij ) I determinant (gij )
g; = 3xK . axk = metric tensor
ar! or

xk = cartesian coordinates in physical space (x'=x,x2=y, x3=2)
vi= g”vj = contravariant velocity

vi= aig_= covariant velocity
ri

Q?=viv.= total velocity

OUNDARY C ITIONS

1. Free stream boundary condition
a) vi;=free stream velocity in i direction
or
b) ¢=0
2. Solid surface boundary condition
vi=0
3. Patch boundary condition

FIGURE 7 FLOW EQUATION
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X_/ 7. TFLOW EQUATION

At all interior grid points of each segment the flow is calculated by solving
a finite difference approximation to the compressible potential equation.
Appropriate boundary conditions, described later, are applied on the four
sides of each segment. We find it particularly'convenient to work with the
generai tensor form of the potential equation and its boundary conditions.

This is because this form eliminates dependence on the precise nature of the

local grid transformations used and because the same equations encompass both
two dimensions and three dimensions. Hence, methods developed in tensor form

are equally applicable to two and three dimensions.

In Fig 7 the tensor form of the potential equation is shown in terms of a
perturbation potential ¢. It is written in so called rotated form (ie with
the principle part split up into streamwise and streamnormal components). The
underlined term is the streamwise component of the principle part and it is
this term which is backward differenced in supersonic regions. The metric

T - tensor gjj represents a transformation between physical space with coordinates

i .
X = w,y,z and some arbitrary space with coordinates rt = r,s,t.

This potential equation may be solved by any convenient numerical method. At
present we solve it in nonconservative form using a line overrelaxation method.
However, it is planned to implement an approximate factorisation scheme in

order to improve the convergence rate in the near future.

Three main types of boundary conditions can be applied on the sides of each
segment. The first two types: solid surface conditions (ie zero normal flow
through the surface) and free stream conditions (ie zero perturbation velocity
or zero perturbation potential) are the same as used with non-patched grids.
These are applied in a standard way using dummy rows of grid points outside

of the relevant boundaries and no further description will be given. The
third type: patch boundary conditions are the heart of the patching method

and will be described in detail.
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SUBSONIC PATCH BOUNDARY CONDITIONS - DIFFERENTIAL FORM

© 8,

Since such boundaries do not represent
These

Fundamental to the satisfactory use of patched grids is the treatment of
patch boundary conditions (ie the conditions applied along the common

The technique is somewhat

real flow boundaries but simply boundaries between different local grids,
the flow velocity along and across such boundaries is continuous.
conditions are sufficient to patch the flow calculations in adjacent segments

boundary of adjacent segments).
the flow equation is still satisfied on these boundaries and in addition

together to produce the overall flow solution.

easier to apply when the flow is subsonic at the boundary points and this

case will be described first.

Fig 8 shows two adjacent segments A and B where for clarity the two segments
are drawn as though separated although they are actually joined along the
Also shown surrounding each segment is a row of dummy

common boundary.

These points do not actually exist but are convenient for the
development of the patch boundary conditions. ,
Taking a typical point on the common boundary the usual five point finite
Points 4,7 are internal to segments
The flow

Points 1,2,3 are common to both

points.

difference star is shown for each segment.

segments being on the common boundary.

A and B respectively while points 5,6 represent dummy points.

equation is solved at all internal grid points of segments A and B using ¢
Hence, updated values

on the common boundary from the previous iteration.
of ¢4 and ¢7 are available and it is required to calculate updated values of

¢ on the common boundary, ie ¢}, $2, ¢13.
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(1) Finite difference approximation to flow equation at
point 2 in segment A

01(¢5-2¢2+¢4)+ °2(¢1 -2¢2+ ¢3) = 06

(2) Finite difference approximation to flow equation at
point 2 in segment B

Py (#7-26, +4g) + by(4,~20,+45) = by
(3) Continuity of normal velocity at point 2

C1 (¢5 - ¢4) + C2(¢1“ ¢3)"C3 = d1(¢7 = ¢6)* d2(¢1-¢3)*d3

FIGURE 9 SUBSONIC PATCH BOUNDARY CONDITIONS
DIFFERENCE FORM
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9. SUBSONIC PATCH BOUNDARY CONDITIONS - DIFFERENCE FORM

This is done by writing finite difference approximations to the flow equation
at point 2 separately for segments A and B using second order central
differences which gives two equations and five unknowns (¢y, 2, 93, o5, bg) -
A third equation with the same unknowns can be obtained using a finite

difference approximation to the condition that the velocity mormal to the

common boundary is continuous across the boundary. Again second order

central differences are used to approximate the velocities. (Continuity of
velocity along the boundary is implicit in deriving the above equations). By

combining these three equations the dummy values ¢5, ¢6 can be eliminated leaving

one equation with three unknowns ¢}, ¢2, ¢3- Applying the same.technique at all

points along the common boundary produces a tridiagonal sYstém of equations

which may be solved for ¢, ¢9, ¢3 etc using the standard algorithm.
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FIGURE 10 SUPERSONIC PATCH BOUNDARY CONDITIONS
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10. SUBSONIC PATCH BOUNDARY CONDITIONS - DIFFERENTIAL FORM

When the flow at some points on a patch boundary is supersonic there is a
further problem in applying the patch boundary conditions. This is due to
fhe backward“d}fferences used to approximate some of the flow equationm -
derivatives at supersonic points. Fig 10 again shows a pair of segments

A and B patched along a common boundary. In this case, however, there are
two rows of dummy points around each segment to allow for backward

differencing and the difference stars have nine rather than five points.

For any specific case only seven of the nine points are actually used,
which seven depending on the local flow direction. If we assume that the
local flow is from bottom left to top right then in segment A points 1,2,3,
4,5,9,10 are used while points 1,2,3,6,7,9,12 are used in segment B.
Comparing with the subsonic case there are now three points (4,7,10) for
which updated values of ¢ are available from the solution of the flow
equation at internal grid points and three dummy points (5,6,12) to be

eliminated.
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pproximation to flow equation at point

01(¢2 - 204 +¢10)+ ay(9,- 204+ g) +Cl3(¢5-2¢2 +¢4)+04(¢1-2¢2 + ¢3)= ag

(2) Finite difference a
2 in segment B

pproximation to flow equation at point

b1(¢2‘2¢6+¢12)+ b2(¢2“2¢3+¢9) + b3(¢7 -2, *¢6)* b4(¢1'2¢2’¢3)= bS

(3) Continuity of normal velocity at point 2 (central
ditferenced )

C1(¢5' ¢4)+C2(¢1-¢3)+c3 = d1(¢7 —¢6)+ c!2(4>1 -¢3)+ d3

(4) Continuity of normal velocity at point 2 (backward
differenced )

€,(3¢,-4¢, + 0, )+ e,(3¢, -4d,7 §y) + ey =

FIGURE 11

f1(30,-4dg+ 1))+ 1,(30, 405+ ¢o) + 3
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11, SUPERSONIC PATCH BOUNDARY CONDITIONS - DIFFERENCE FORM

Thus four equations are required to eliminate the dummy points for the
supersonic case rather than three. The first three equations are
essentially the same as for the subsonic case except that appropriate
second derivatives in the two approximations to the flow equation are

now backward differenced rather than centrally differenced. After some
experimentation we find the best equation to use for the fourth equation
is another finite difference approximation to the continuity of normal
velocity condition but this time approximating the velocities by second
order backward differences in the usual upstream sense. This ensures that

the value of ¢ at the extra dummy point (point 12 in this case) is not

_ influenced by downstream values of ¢ which would violate the domain of

dependence conditions.

When ¢5, ¢g and ¢, have been eliminated from these four equations a
single equation with four unknowns (61, ¢2, ¢35 99) is left. Applying
the same technique at each point along the common boundary leads to a
quadradiagonal system of equations which may be solved for ¢y, ¢, 3, g
etc. In practice, we reduce this set to a tridiagonal system, which is

easier to solve, by fixing ¢4 at its value from the previous iteration.

Experience so far suggests that supersonic points on a patch boundary are
more likely to lead to instability than are subsonic points. However, with
some care it has been possible to satisfactorily compute cases with all
subsonic, all supersonic and with mixed boundary points including one case

where a strong shock crossed the boundary.
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12. EXAMPLE CONDI NOZZLE GRID

In order to demonstrate the use of the method, we considered the case of
a duct flow. The configuration is that of a convergent-divergent nozzle
produced by a cosine distortion on the upper surface of a two~dimensional

duct with an area ratio of 0.8.

Clearly, it is possible to produce a single segment system to solve this
problem but for the sake of demonstration we have divided it into three
segments. The interfaces between the segments are denoted by the more
pronounced lines and these patches are normal to both upper and lower
surfaces. Note that, although the lines appear to have continuous
derivatives through the segment boundaries, this is not the case. The
grid points have been distributed in an appropriate manner with a much
finer grid near the bump on the upper surface. For this example the grid
extends to finite distances upstream and downstream and uniform onset flow

is assumed at the upstream end.
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13. EXAMPLE CONDI NOZZLE RESULTS

In order to check the results, comparisons have been made with a well
established nozzle program developed by Baker at ARA. The case shown
here is for an onset Mach numper of 0.5. The inviscid flow solution,
which is outside the range of validity of a potential method, is
nevertheless an appropriate test case with a very strong shock. The
agreement between the two methods is very encouraging and the patching
does not appear to have affected the solution. However, possibly due to
slow convergence, there was a small discontinuity across the patch but
when the mean value is used, the result is reasonably smooth. The
locations of the segment interfaces are shown on the figure. Although
they are not shown here, changes in the position and number of patches

did not affect the result significantly.
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CONCLUSIONS AND PROPOSALS FOR FURTHER WORK
1 Initial use of grid patching is encouraging
2 The range of application has been- limited

3 Further cases are now being attempted
e.g. aerofoil in wind tunnel
cascade flows

intake flows

4 Modifications required for unrestricted far field

5 Extension to three dimensions

FIGURE 14
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CONCLUSIONS AND PROPOSALS FOR FURTHER WORK
The grid patching technique has been investigated using two-dimensional
However, the range of

14,

test cases and initial results are encouraging.
application has, so far, been limited and cases with a greater number of
segments are now being attempted. These include an aerofoil in a wind

e two configurations shown earlier, cascade and
For the latter case some work is required in introducing

intake flows.
extra transformations for an unrestricted far field.

tunnel together with th
ould then be in a position to deal with most two-dimensional problems

uld form the basis of extending the techniques into three

We sh
and this sho

dimensions.

(
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- BOUNDARY-FITTED COORDINATES FOR REGIONS WITH

HIGHLY CURVED BOUNDARIES AND REENTRANT BOUNDARIES

U, GHIA AND K.N. GHIA
UNIVERSITY OF CINCINNATI, CINCINNATI, OHIO

A procedure has been developed, using the differential-
equation approach, for generating boundary-fitted coordinates
: for regions with highly curved boundaries as well as reentrant
- boundaries, such as those encountered in breaking surface

waves. The resulting coordinates are nearly orthogonal and
can provide adequate resolution even in the reentrant region.
Consistent treatment of end boundaries and the use of a
systematic initialization scheme and advanced implicit
numerical solution techniques make the procedure highly
efficient. The method developed for implicit enforcement of
the periodicity boundary condition should be beneficial in
N the analysis cf turbomachinery flow applications.

~ Prgqeding page _hlank
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CONSISTENT TREATMENT OF END-BOUNDARIES

1 f $= ¢max
n=1

B————

r=0 | curves of
::;;;;;>n=constant
T =0 —

A A ($=0) 2

A limiting form of the coordinate ecuations at the
end-boundary is solved to determine, prior to the complete R
solution, the point distribution at this boundary, con- N/
sistent with the interior distribution. This procedure
avoids discontinuities in the transformed-coordinate
derivatives near the end-boundaries, while maintaining
Dirichlet boundary conditions for the transformation.



SOLUTION OF LIMITING EQUATION AT END-BOUNDARY

n
y
3
-+ =
d>rm Q ¢n 0
where
2 2 2
o(n) = [ == expl-(n-n)"/(2by)]
k=1 "k
a; <0, la; | = a,
b1 = b2 = 0.1
n, = 0o, Ny = 1
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INITIALTIZATION PROCEDURE

INITIALTIZATION BY
LOCALLY SELF-SIMILAR SOLUTION

GEOMETRIC INITIALIZATION
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INITIALIZATION PROCEDURE

GEOMETRIC INITIALIZATION

A N

INITIALIZATION BY LOCALLY SELF-SIMILAR

SOLUTION
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SURFACE-ORIENTED COORDINATES FOR DUCT WITH HIGHLY
CURVED BOUNDARIES

';_,L‘,‘II! !
J

BOUNDARY-ORIENTED COORDiNATES FOR_A TYPICAL SURFACE WAVE

WITH REENTRANT BOUNDARIES
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SURFACE-ORIENTED COORDINATES FOR A_TURBINE CASCADE -
(129 x 33) NONUNIFORM GRID WITH EASILY APPLICABLE PERIODICITY
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STREAMWISE-ALIGNED SURFACE-ORIENTED~COORI'jINATES FOR A TYPICAL

TURBINE CASCADE - (161 x 33) NONUNIFORM GRID

(|
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TABLE 1. EFFECT OF MULTIGRID (MG) ITERATION TECHNIQUE ON
CONVERGENCE OF COORDINATE SOLUTION FOR CASCADFE
WITH EASILY APPLICABLE PERIODICITY

. Work Units of CrpU
Method Grid Resp. Finest Grid Seconds Remarks
ADI (65x17) 100 37.69 uniform spacing
SIP (65x17) 53 11.9¢ uniform.spacing
MG-SIP (65x17) 6.5 2.08 uniform spacing
ADI (65x17) 95 36.67 nonuniform spacing
SIPp (65x17) 25 6.33 nonuniform spacing
MG-SIP {(65x17) 7.5 2,32 nonuniform spacing
MG-SIP (129 x 33) 1 6.4 8.44 nonuniform spacin?J
TABLE 2. CONVERGENCE OF COORDINATE SOLUTION FOR CASCADE
GEOMETRY WITH PERIODICITY USING A STRONGLY
IMPLICIT PROCEDURE (SIP) AND MULTIGRID (MG)
TECHNIQUE
. Work Units of CPU
Method Grid Resp. Finest Grid Seconds Remarks
SIPp (161 x 33) 81.00 =100.0 uniform spacing.
convergence is one
order less than for
nonuniform spacing.
MG-sIP {161 x 33) 7.48 10.79 uniform spacing
MG-SIP (161 x 33) 8.23 11.49 nonuniform spacing
MG-SIP (81x17) 8.838 4.02 nonuniform spacing
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TYPICAL SURFACE-ORIENTED COORDINATES FOR A CASCADE WITH

HIGH STAGGER - (65 x 21) NONUNIFORM GRID

This figure shows a multiple-circular-arc supersonic compres-
sor cascade with a large stagger angle and a typical coordinate
distribution for such a cascade. The grid lines are concentrated
near the surface of both the blades, especially near their leading
and trailing edges, in order to provide good resolution for the
viscous and shock effects in these regions. In addition to the
nonuniform distribution of the grid points, an effort has been
made to maintain near-orthogonality wherever possible. The exist-
ing non-orthogonality can be easily removed by increasing the
number of points in the streamwise direction, although the coordi-
nate distribution shown in this figure may actually be preferred
for supersonic cascades. Moreover, the point distribution along
the free boundaries is such as to enable enforcement of the peri-
odicity condition, i.e., the point distributions along BC and DE
are the same as along B'C' and D'E', respectively. The number of
working units reguired to generate the (65 x 21) coordinates shown
was 8.44 using the SIP-multigrid method; the corresponding CPU

time was 3.48 seconds.
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CONCLUSIONS

Generation of appropriate Dirichlet boundary conditions even
with non-zero forcing functions enhances solution convergence
rate.

An adaptive coordinate distribution is formulated for the
breaking surface-wave problem with a reentrant boundary;

wave starting from an initial sinusoidal form and under-
going the breaking phenomenon.
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A SIMPLE NUMERICAL ORTHOGONAL COORDINATE

GENERATOR FOR FLUID DYNAMIC APPLICATIONS

Randolph A. Graves, Jr.

OAST Aerodynamics Office
NASA Headguarters
DC

Washington,

Abstract

An application of a simple numerical technique
which allows for the rapid construction of
orthogonal coordinate systems about two dimen-
sional and axisymmetric bodies 1s presented.
This technique which is based on a "predictor-
corrector" numerical method is both simple in
concept and easy to program. It can be used
to generate orthogonal meshes which have unequally
spaced points in two directions. These orthogonal
meshes in their transformed computational plane
are, however, equally spaced so that the
differencing for the metric coefficients and the

fluid dynamic equation terms can be easily
determined using equally spaced central finite

Solutions to the Navier-Stokes
The coupling

differences.
equations for flow over blunt bodies with

reverse curvature are presented.
of the time dependent fluid dynamic equations
and the coordinate generator worked well with

no undersirable effects noted.
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Flowfield Geometrical Relationships

The numerically generated orthogonal coordinates
are determined from the original cartesian coordinate

boundary. Taking the origin of the X,Y system as
lying inside the body to be described, the surface
distance £, which forms one of the transformed
orthogonal coordinates, can be easily calculated by
defining £ as zero at origin of the region of
interest and increasing to unity at the end of the
region (nondimensionalized surface distance). The
other orthogonal coordinate, n, is taken as zero on
the body surface and as unity on the outer boundary.
Thus the region of interest is transformed into a
nondimensional square.
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Level Line Construction

The level lines between the outer boundary and the

body surface can be constructed arbitrarily; however,
the easiest approach is to construct the level lines
along straight lines connecting corresponding points

on the body and the outer boundary. The mesh points

on the outer boundary are not the final mesh points
but initial values used only to set up the level lines.
The actual mesh points will result from the numerical
generation of the orthogonal normal lines. The spacing
of the level lines is arbitrary and highly stretched
meshes can be easily constructed.
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Normal Line Construction Technique

Once the level lines have been determined, the normal
lines are constructed numerically so that an orthogonal
system is defined. The approach to the construction of
the normal lines is the one given by McNally which uses
a simple "predictor-corrector” technique analogous to
the trapezoidal integration method of numerical inte-
gration. 1In this technique, the solution is first
predicted from the level line at a known point by using
the Euler method. Once the predicted point on the next
level line is obtained, the slope at that point is calcu-
lated and a new predicted point is obtained using this
slope. The actual solution is then a combination of
these two solutions, i.e. the final X,Y values are an
average of the predicted and corrected ones.

SLOPE AT THIS POINT USED
TO GENERATE SECOND
PREDICTED NORMAL

FINAL NORMAL —— =’
ORTHOGONAL LINK

LOWER LEVEL
LINE




X Typical Coordinate Mesh Construction

Starting on the body, the normal line construction
= technique proceeds point by point along a level
- line until all normals on that level have been
L constructed. The solution then proceeds to the

i next level and the process is continued until the
outer boundary is reached. Thus the complete
mesh system is numerically generated in a simple
straight forward, noniterative process. Since
the computational plane (g,n) is an equally spaced
rectangular region, the metric coefficients can be
T determined from the completed mesh system using
equally spaced finite difference relations. Fourth
order accurate difference relations are recommended
as they provide for smoothly varying metric coeffi-

cients.

TYPICAL MORMAL
LINE CONSTRUCTED BY
“PREDICTOR - CORRECTOR"

PROCESS

d
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Shock and Sonic Line

(‘

Solutions to the laminar flow Navier-stokes equations
were obtained for flow over bodies with blunted noses,
including reverse curvature. These bodies were
generated using the following cubic forebody generator,

_ 2 3
X—XO Ay Yy +A2y

where XO determines the nose offset while the coefficients

Ay} and A) are determined such that the forebody nose
section joins smoothly to the conical flank. This

solution was run for a free stream Mach number of 10.33
and Xo=.4. The shock shape and sonic line are typical
of the solution for bodies with very blunt nose regions.

SHOCK

0
i |

(

SONIC LINE
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Converged Coordinate System

The converged coordinate system shown for Xo=.4 is
composed of 15 transverse stations and 31 normal

stations. The normal direction spacing is highly

stretched to provide resolution for the boundary layer.

There is only mild stretching in the transverse
direction to provide for improve stagnation region
resolution. There were no undesirable effects noted
in the coupling of the viscous flow calculations with

the coordinate generation.
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A THREE-DIMENSIONAL BODY-FITTED COORDINATE
SYSTEM FOR FLOW FIELD CALCULATIONS ON
ASYMMETRIC NOSETIPS

DARRYL W, HAaLL
Sc1ENCE APPLICATIONS, INC,
McLEAN, VIRGINIA

ABSTRACT

This presentation describes a three-dimensional body-fitted coordi-
nate system developed for use in the calculation of inviscid flows over
ablated, asymmetric reentry vehicle nosetips. Because of the potential
geometric asymmetries, no standard coordinate system (e.g., spherical,
axisymmetric reference surface-normal) is capable of being closely aligned
with the nosetip surface. To generate a 3-D, body-fitted coordinate
system an analytic mapping procedure is applied that is conformal within
each meridional plane of the nosetip; these transformations are then
coupled circumferentially to yield a three-dimensional coordinate system.
The mappings used are defined in terms of "hinge points", which are
points selected to approximate the body contours in each meridional
plane. The selection of appropriate hinge points has been automated to
facilitate the use of the resulting nosetip flow field code.
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PROBLEM DEFINITION

The goal of this effort is the development of a procedure for cal-
culating supersonic/hypersonic inviscid flows over asymmetric ablated
reentry vehicle nosetips. These asymmetric shapes, such as illustrated
in this figure, result from asymmetric transition on the nosetip, which
occurs at the Tower altitudes during reentry (i.e., below 15.24 km).
Because these shapes occur in the high Reynolds number, turbulent regime,
with thin boundary layers, an inviscid solution is capable of accurately
predicting the pressure forces on the nosetip. The nosetip flow field
solution is also required to provide the required initial data for after-
body calculations; this coupling of nosetip and afterbody codes allows
accurate prediction of the effects of the nosetip shape on the afterbody
flow field.

The flow field code developed is a finite-difference solution of
the unsteady Euler equations in "non-conservation" form (i.e., the de-
pendent variables are the Togarithm of pressure, P, the velocity compo-
nents, u,v,w, and the entropy, s). In this approach the steady flow
solution is sought as the asymptotic limit of an unsteady flow, starting
from an assumed initial flow field.

CARLCULATION OF SUPERSONIC/HYPERSONIC INVISCID FLOWS OVER ASYMMETRIC ABLATED

REENTRY VEHICLE NOSETIPS

ASYMMETRIC ABLATED NOSETIP SHAPE

APPROACH
o FINITE-DIFFERENCE SOLUTION OF UNSTEADY EULER EQUATIONS

¢ STEADY FLOW SOLUTION SOUGHT AS THE ASYMPTOTIC LIMIT OF

UNSTEADY FLOW
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COORDINATE SYSTEM REQUIREMENTS

It is well known that accurate numerical calculation of fluid flows
requires the use of a coordinate system closely aligned with the principal
features of the flow. For the nosetip problem this requirement would be
satisfied by a coordinate system which closely follows the body shape and,
hence, the streamlines of the flow. Because of the asymmetric nosetip
geometries being considered, standard coordinate systems (e.g., spherical,
axisymmetric reference surface-normal) are incapable of being aligned with
the nosetip surface at all points. Thus, a coordinate transformation is
sought that will align the coordinate system with an arbitrary nosetip
geometry. By requiring the transformation to be in analytic form, the

need of solving partial differential equations to define the transformation

can be avoided. Finally, the transformation should be in a form that
readily lends itself to automated definition, minimizing the inputs re-
quired of a user of the code.

OPTIMUM COORDINATE SYSTEM FOR NUMERICAL FLOW FIELD CALCULATIONS

IS BODY-ORIENTED

COORDINATE TRANSFORMATION SOUGHT THAT:

1.) ALIGNS COORDINATE SURFACES WITH BODY

SURFACE

2.) 1S ANALYTIC (SOLUTION OF PDE'S NOT REQUIRED
TO DEFINE TRANSFORMATION)

3.) CAN BE READILY AUTOMATED (TO MINIMIZE INPUTS
REQUIRED FROM USER)
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COORDINATE TRANSFORMATION

The nosetip geometry is defined in an (x,¥,¢) cylindrical coordinate
system, and a mapping to a (€,n,8) transformed coordinate system is sought.
Since current reentry vehicle nosetips are initially axisymmetric (prior
to ablative shape change), it is assumed that nosetip cross-sections re-
tain some “"axisymmetric" character during reentry. Thus, no transforma-
tion of the circumferential coordinate is required, and 6 = ¢ is assigned.
(This transformation can readily be generalized to 6 = f(¢) if required
for other applications of this approach.) Within a ¢ = constant merid-
ional plane, the transformation reduces to the two-dimensional form
E=E(x,y), n = n(x,y). Conformal transformations from the z = xtiy to
thez = g+in plane are desirable, ensuring that an orthogonal (&,n) grid
maps back onto an orthogonal grid in the (x,y) plane.

(x,y,4) CYLINDRICAL COORDINATES IN PHYSICAL SPACE

(£,n,6) COORDINATES IN TRANSFORMED SPACE

TRANSFORMATION OF CIRCUMFERENTIAL COORDINATE NOT REQUIRED
(NOSETIPS INITIALLY AXISYMMETRIC); ASSUME TRANSFORMATION

TAKES THE FORM
£ =t (x,y,¢)

n=n (Xa)’,¢)

IN A MERIDIONAL PLANE (4 = CONSTANT), THE TRANSFORMATION
REDUCES TO

= £(x,y)

[2a}
|

= n(x,y)

o |
1
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DEFINITION OF TRANSFORMATION

The approach used to define the coordinate transformations is a
modification of the "hinge point" approach of Moretti*. The mapping
js defined as a sequence of conformal transformations of the form

- 83
17 17 g7 Ny
where zj = Xj +iys (j = 1 is physical space) and hi,j is the ith hinge
point in the z; plane. The hinge points in the physical (z1) plane are
selected to approximately model the body geometry. By mapping the
hinge points sequentially onto the horizontal axis, the image of the
body surface will then be a nearly horizontal contour.

Z

INDEPENDENTLY IN EACH MERIDIONAL PLANE, DEFINE A SEQUENCE

OF CONFORMAL TRANSFORMATIONS

8z
. 5oL
TR LN RN U R A

.=x. 43 . (3= 15 PHYSICAL SPACE
z5 = X 1yJ(3 1 YSIC )

hi 5= ith uuinGE POINT" IN jER SPACE

HINGE POINTS ARE SELECTED TO APPROX IMATE BODY GEOMETRY

Hince PoInT DEFINITION

*Moretti, G., "Conformal Mappings for Computations of Steady, Three-
Dimensional, Supersonic Flows," Numerical/Laboratory Computer Methods
in Fluid Mechanics, ASME, 1976.
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SEQUENCE OF TRANSFORMATIONS

In the jEﬁ.mapping of the sequence, the transformation is centered

around the hinge point hj+1,j. The mappings have the property of keep-
ing the hinge points, hi.5 (i< J+1) on the horizontal axis, while mapping

the hinge
formations
horizontal axis.

point hjsp 5 onto the horizontal axis. Thus, after JA trans-
» all g

A+2 "hinge points in the JA+1 space will 1ie on the
(Each mapping in this sequence may be considered a

"point-wise Schwarz-Christoffe]" transformation.) This figure illustrates
the sequence of transformations for JA = 3.
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TRANSFORMAT IONS - CONTINUED

table for flow field calculations

In order to establish a grid sui
a nearly horizontal surface, it is

when the image of the body contour is
£ the centerline external to the body 1ie
1 conformal

desirable to have the image o

along the vertical axis. This is achieved using an additiona
transformation, centered around the second hinge point, of the form
1/2

Z3p+2 (Z3pe1 - h2,JA+1)

The last transformation is a simple stretching (which is also conformal):

¢ =E+in = azgn

he calculation procedure along the center-
es the body contour resulting in the z-plane

(This stretching is used in t
A = 3, where the body surface is defined

line.) This figure illustrat
for the case of a sphere with J

as n = b(g).
MAP CENTERLINE ONTO VERTICAL AXIS WITH

. 1/2
23042 = (2ga41 ~ P2 0ne1)

ALLOW FOR SIMPLE STRETCHING (REQUIRED FOR CENTERLINE

TREATMENT) WITH

r,=g+in=azJA+2

RESULTING BODY CONTOUR:

(’ i}
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COMPUTATIONAL TRANSFORMATION

For the flow field calculat
spaced grid points. Thus, a tran
system (X,Y,Z) is used, in which
ferentially in @, longitudinally

in n between the body and the shock.
(X,Y,Z) system is not orthogonal, and that the computational transforma-

tion varies with time as the bow
dependent calculation. These ske
resuiting in a meridional plane i
formed (z = £+in) space for a typ
shock layer thickness exaggerated

ion it is desirable to have equally

sformation to a computational coordinate

grid points are equally spaced circum-
in £ within each meridional plane, and
It is important to note that the

shock position varies during the time-

tches illustrate the computational grids

n both physical (z = x+iy) and trans-
ical ablated nosetip contour (with the
for clarity).

DESIRE GRID POINTS EQUALLY SPACED IN £ ALONG BODY, INn BETWEEN

BODY AND SHOCK, AND IN © CIRCUMFERENTIALLY

. B .
X =2 Y=

7

PHYSICAL SPACE

T T e —— ll
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PARAMETERS OF THE TRANSFORMATION

In transforming the governing equations from physical to the (X,Y,Z)
computational coordinates, certain derivatives of the transformation are
required. Because the transformation has been defined in analytic form,
these derivatives can readily be evaluated analytically and are functions
only of the hinge point locations. Within a meridional plane (¢ = constant),
the required derivatives are g = ac/%z and ¢ = 3(1og g)/ocC. Circumferen-
tially, the independent transformations in each meridional plane can be
coupled to produce a three-dimensional transformation by assuming that
hinge point locations can be expressed as hi_j(¢). The required circumfer-
ential parameters of the transformation, zg and gy, can be evaluated
analytically if each meridional plane has %he same number of hinge points
and assuming the form of interpolating functions for hi,j{(¢). Alterna-
tively, it has been found to be sufficient to evaluate g, and gy from
Taylor series expansions using data at computational (X,?,Z) mesh points,
with the forms of the resulting expressions shown in the figure.

REQUIRED TN WRITING GOVERNING EQUATIONS IN TRANSFORMED
COORDINATES

i
Ge'"

Q>
Eal

|

g = =g * ing = -, *ny

Q2

z

- 3103 9)
<z> 33—9

CAN BE EVALUATED ANALYTICALLY

ELBCUMFERENTIAL PARAMETERS OF THE TRANSFORMATION

2419 CAN BE EVALUATED ANALYTICALLY IF EACH MERIDIONAL
PLANE HAS THE SAME NUMBER OF HINGE POINTS, ASSUMING INTER-

POLATING FUNCTIONS FOR hi j(¢)
ALTERNATIVELY, EVALUATE FROM TAYLOR SERIES EXPANSIONS: V

cz-cl-g(zz-zl)

%% 5t e T T 60
.
9,-9,-9" @(2p-2y)
% T T a0y

( )+ (X-8X,Y,1), ( )y » (aX,Y,2) IN COMPUTATIONAL MESH
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AUTOMATIC GENERATION OF HINGE POINTS

To simplify the application of this coordinate transformation to the
asymmetric nosetip flow field problem, the selection of hinge points that
define the transformations has been automated. Within each meridional
plane to be computed, body normals are constructed at points equally
spaced in wetted length along the body profile. The hinge points are then
selected to lie a distance § inside the body along these normals. By re-
lating § to any convenient scale factor for a nosetip geometry, the only
input required of the user of the code is the number of hinge points to
be used. The locations of the first two hinge points (i.e., those that
Tie on the x axis) are the same in each meridional plane, in order to
simplify the treatment of the centerline. Typically, no more than nine
hinge points per meridional plane (JA = 7) are necessary for the nosetip
flow field problem.

4y,

HINGE POINTS LOCATED DISTANCE & ALONG INWARD BODY NORMALS, FROM
BODY POINTS EQUALLY SPACED IN WETTED LENGTH

ONLY INPUT REQUIRED OF USER IS NUMBER OF HINGE POINTS TO BE
USED IN EACH MERIDIONAL PLANE
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TREATMENT OF CENTERLINE

The greatest complication encountered in the use of this 3-D coordi-
nate transformation is the extra care that must be taken in treating the
grid points on the centerline. Since the transformations in each merid-
jonal plane are independent, the scale factors g = 9;/dz along the
centerline will not be the same in each meridional plane. Thus, one
computational grid point at the centerline will represent different physical
points for each value of 4 . To minimize these discrepancies, the stretch-
ing transformation z = azgp+2 1S used to ensure that the images of the
first hinge point are coincident in all meridional planes. The remaining
discrepancies are small enough that simple linear interpolations can be
used to account for differences in the scale factors.

In addition to the mapping complications along the centerline, the
governing equations in cylindrical coordinates are singular along y = 0.
This difficulty has been avoided by using a Cartesian (xl,xg,x3) coordinate
system for the centerline analysis. The required Cartesian derivatives
can be expressed in terms of the radial derivative 3/3y in cylindrical
coordinates for certain values of ¢, as shown in this figure. The only
restriction resulting from this analysis is that computational planes must
be located at ¢ = 0, /2, w, and 3n/2.

AT THE CENTERLINE (y = 0), SCALE FACTORS (g = 3g/az) VARY WITH ¢
STRETCHING TRANSFORMATION USED TO MINIMIZE DISCREPANCIES, WITH

oy - Magae(®=0)
S YV CEE

CARTESIAN COORDINATES (xl,xz,x3) USED IN CENTERLINE ANALYSIS

2 - 2

Bxl X

3 . ocosed - Sing 3 -
ax2 cos@ay y ¢

9 . 3,054 3

S’G = sin¢3 + v 3%

: 2
WITH 1im 9 _ 3 FINITE
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RESULTING FLOW FIELD CODE

The 3-D, time-dependent, inviscid nosetip flow field code that was
developed using the 3-D coordinate transformation described here is called
CM3DT (Conformal Mapping 3-D Transonic).: This code can treat ideal or
equilibrium real gas thermodynamics, has both pitch and yaw capability,
and is able to treat weak embedded shocks on indented nosetips using the
A-differencing scheme*. To provide total body inviscid flow field capa-
bility, the CM3DT code has been coupled to the BMO/3IS**, NSWC/D3CSS*,
and STEIN** afterbody codes. Complete details on the CM3DT analysis and

results obtained with this code may be found in the following references:

Hall, D. W., "Inviscid Aerodynamic Predictions for Ballistic Reentry
Vehicles with Ablated Nosetips," Ph.D. Dissertation University of Penn-
sylvania, 1979.

Hall, D. W., “Calculation of Inviscid Supersonic Flow over Ablated Nose-
tips," AIAA Paper 79-0342, January 1979.

IH3LT (CONFORMAL MAPPING 3-D TRANSCHIC)
NOSETIP FLOW FIELD CODE

v IDEAL OR CQUILTBRIM REAL GAS THERMODYMAMICS
* PITCH ARG YAW CAPARILITY

® A-OIFFERENCING STHEME USED T3 TREAT WEAY. EMSEODED

SHOCKS ON TNDENTED NOSETIPS
o COZPLED TO AFTERBOOY CODIS FOR TOTAY IMVISCID
FLOW FIELD CAPABILITY

e BMO/3IS
& NSNC/DILSS
e STEIN

. 81,00010 CORE STORAGE REGUIRED

- -

*Morettj, G., "An 01d Integration Scheme for Compressible Flow Revisited,
Refurbished, and Put to Work," Polytechnic Institute of New York, POLY-
M/AE Report 78-22, September 1978. '

**Kyriss, €. L. and Harris, T. B., "A Three-Dimensional Flow Field Computer
Program for Maneuvering and Ballistic Reentry Vehicles," 10th U. S, Navy
Symposium on Aeroballistics, July 1975; also, Daywitt, J., Brant, D., and
Bosworth, F., “Computational Technique for Three-Dimensional Inviscid Flow
Fields about Reentry Vehicles, Volume I: Numerical Analysis,” SAMSO TR-
79-5, April 1978.

+So]omon, J. M., Ciment, M., Ferguson, R. E., Bell, J. B., and Wardlaw,

A. B., Jr., "A Program for Computing Steady Inviscid Three-Dimensional
Supersonic Flow on Reentry Vehicles, Volume I: Analysis and Programming,"
Naval Surface Weapons Center, NSWC/WOL/TR 77-28, February 1977.

++ .
Marconi, F., Salas, M., and Yaeger, L., "Development of a Computer Code
for Calculating the Steady Super/Hypersonic Inviscid Flow around Real

Configurations, Volume I. Computational Technique," NASA CR-2675, April 1976.
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CM3DT RESULTS

Y

. This figure presents some typical results obtained with the CM3DT
o inviscid nosetip flow field code. Shown are comparisons of predictions
to data obtained for the PANT Triconic shape* at M_ = 5. It is signifi-
cant that attempts to compute the flow over this sTender shape using a
time-dependent code formulated in a spherical coordinate system were
unsuccessful. CM3DT, with its body-oriented coordinate system, was able
to obtain converged solutions for this shape, with the predictions agree-
ing well with the data, as seen in this figure.

O EIPERMINTIL DATA
R« 15.8 1 W0Y/ML

—_——

-t e ———
1.0 .0 3.0 >

tue FANT Tricontc av Pl = S, 0=0°

vm
|
i

CM3DT Swock Sware PREDICTION FOR

o. o

; ‘~T— 'r—*—_r—'—‘l—’_‘ o2
H
; '} .

LEPLRIMENTAL DATA
Re_ - 18.9 3 10%1C

SUAFACE PAESSURE b/p,

O Lf

O FIP(RIZINTAL DATA
Re_ - 1985 0°/1 b © —— - oum
—
ll‘__—‘]_____,l.___—Lr_—-—- _____..—.L
[ 1 z 3 . 1 rt-__._.___ _= —_— Lo
»
SurFace Parssure FRECICTIONS FOR THE PANT Surrace Paessune PREDICTIONS FOR THE
Taiconic ar L= 5, ¢ = 0 (Note: 1 ft = 0.3048 m) PANT Tricowtc at M, = 5, = = 10°

*Abbett, M. J. and Davis, J. E., "Interim Report, Passive Nosetip Tech-
nology (PANT) Program, Volume IV. Heat Transfer and Pressure Distri-
bution on Ablated Shapes, Part II. Data Correlation and Analysis,"”
Space and Missile Systems Organization, TR-74-86, January 1974.

¢
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CM3DT - RUN TIMES

On a CDC Cyber 176 computer, the CM3DT inviscid nosetip code with
A-differencing requires approximately 0.00045 CP seconds per grid point
per time step (iteration). Typically, 400-500 time steps are required
to obtain a converged solution. It is estimated that the computer time
required for a solution has been increased by approximately 20% by using
the 3-D coordinate transformation described here, when the parameters

of the transformation on the moving grid are updated every ten time steps.

When compared to the standard MacCormack differencing scheme, the use of
A-differencing scheme increases the run time requirements approximately
50% for this code.

ON A CDC CYBER 176, CM3DT REQUIRES 0.00045 CP SECS/POINT/STEP
FOR IDEAL GAS CALCULATIONS WITH A-DIFFERENCING

® 20% PENALTY INCURRED FOR COORDINATE
TRANSFORMATION (PARAMETERS ON MOVING
GRID UPDATED EVERY 10 TIME STEPS)

® 50% PENALTY INCURRED FOR A-DIFFERENCING
(RELATIVE TO MAC CORMACK DIFFERENCING)
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CONFORMAL MAPPINGS OF MULTIPLY CONNECTED REGIONS
ONTO REGIONS WITH SPECIFIED BOUNDARY SHAPES

Andrew N. Harrington
School of Mathematics
Georgia Institute of Technology

a; Ff 32 A1 rLW* 1L___.TA2
8 N r
% _— S,
a, a, Aq A3

£
f conformal f(aj) = Aj, Yj 3 Fj

The author has developed and implemented a numerical procedure to compute
the conformal mapping of a given n-tuply connected region onto a region with
any specified boundary shapes and with several possible normalizations. If we
start with a region whose outer boundary is a rectangle, we may arrange that
the outer boundary of the image region is also a rectangle and the vertices
map to vertices. We may choose the inner boundaries to map to rectangles or
to any other shapes.

'Cyb ./—"——_——'_’——_—’——\~i3’ Cxo

We may also consider unbounded regions and find a mapping normalized at
o z + 0(1/z). We may choose the boundaries of the image region to be circles
or any other shapes.
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Method hd

Though we may specify boundary shapes and orientations arbitrarily, the
proper translation and magnification parameters must be calculated to determine
the image domain and the mapping. For example, in order to find a conformal
mapping between n-tuply connected regions R and S containing ® with f(o) = o,
we must satisfy conditions on Ggr and Gg, the analytic completions of the Green's
functions for R and S with pole at ®, We must have

GR(rJ) = GS(SJ) j = 1, 2, ee. n=-1

where riy and s;, j =1, 2, .., n-1, are the critical points for Gg and Gy
labeled in the  figure. Using Symm's method to approximate Green's functions
one may easily calculate the appropriate parameters. Then Gg(f(z)) = Ggr(z).

The dotted curves are the level curves of Re Ggr and Re Gg which branch at
the critical points.
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BOUNDARY-FITTED COORDINATE SYSTEMS FOR ARBITRARY COMPUTATIONAL REGIONS

©
Edward J. Kowalski
Boeing Military Airplane Company

Advanced Airplane Branch
Seattle, Washington 98124

A computational region of arbitrary cross section presents a significant
Simple orthogonal meshes are

problem in the generation of a mesh.
difficult to use because the mesh points do not naturally fall on the
Differencing and interpolation schemes become

region's boundaries.
complex and cumbersome, and it is difficult to extend these schemes to
Higher order schemes

higher order because of the complex logic required.
are desirable as they allow calculation of a flow to a given level of

accuracy with a lower mesh density and hence less storage than a lower

order scheme. High accuracy solutions are possible for a region of

Iy

arbitrary cross section when a boundary-fitted computational mesh 1is

employed. A boundary-fitted mesh js defined as a mesh in which the
boundary (i.e., a duct wall) is coincident with the mesh points that are

used for finite difference expressions at, and adjacent to, the
Interpolation is not required, and extension to higher order

boundary.
This is a significant benefit when the

differencing is straightforward.
boundary conditions have a dominant influence on the solution.
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This paper will discuss the application of Smith and Wiegel's method for o

generating boundary fitted coordinate systems (discussed in their
AIAA-80-0192 paper entitled, “Analytic and Approximate Boundary Fitted
Coordinate Systems for Fluid Flow Simulation") for two practical flow
problems characterized by complex surface geometry:

0 radial mixer lobe

0 subsonic inlet designed for high angle-of-attack capability
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Secondary stream
Figure 2.- Radial mixer lobe.
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In the method of Smith and Wiegel, two disconnected boundaries are
defined and an explicit functional relation is used to establish the

transformation between the physical domain and the computational domain.

The physical domain is defined by a cartesian coordinate system; the

computational domain is defined with the variables £ , n and ¢ with the

values:

0= £ 24

O0<%ne
oiggi

Two possible connecting functions are suggested: 1linear and a cubic
parametric polynomial. The following cubic polynomial equation was used

to generate meshes for both the lobe mixer and the subsonic inlet:

dX
x = 1O m) ¢ KEOGh) + 2L (Lo
dX
+ G2 (.01
dy
Y = QAN + Y,(0.060) + X (€.0)f (n)
1 1 2 2 dn 3
de
+ & (C.()fq(n)

dz
2= e ¢+ (600 ¢ 21 (o)

¢ B2 (E0T )
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where:
ag )9 Zx(%,( ), 1 =1,2 are the

(4.5 ). 4
boundary points in the physical domain
dXt 'gﬂ) dY, (X,%) %;4 (’3 £), [£=1,2 are the

am
derivatives of the boundary po1nts in the physical domain

f(n)‘z'\ - 34

f,(n) = 203 ¢ 30

fy(n) = nd- 2?4 m

14(n) = n3 -n

The cubic connecting function forces orthogonality at the boundaries of
dxe (K%

the physical domain by calculating the derivatives
from the cross product of the tangential

dy ) and d
Qe (5.8 end SR %)
der1vat1ves and then dividing by the magnitude of the normal vector.

C‘MH

(WH
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Four extensions of the Smith and Wiegel method were necessary in order to

successfully apply their technique to the mixer Tobe and subsonic inlet.

First, because of the nature of the mixer and inlet geometries, points

defining the boundaries had to be positioned using a geometric

progression,
S=a+ar+ ar2 + oo+ aph-l
_a(l-rN)
1-r

where

S = the total length of the boundary

a = first increment

r = scale factor

N = number of cells (one less the number of boundary points)

For the mixer, the scale factor r was varied Tinearly from r=1 at the
mixer entrance plane (where the boundary is an arc) to r = rmax at the
mixer exit plane (where the boundary is highly distorted). This makes it
possible to force the mesh to migrate to regions of interest without
causing significant distortions in the mesh from plane to plane. The
optimal distribution of mesh occurred when the upper and Tower boundary

mesh points were stretched in opposite directions.
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Figure 5.- Geometric progression for boundary points for secondary stream.
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The inlet has certain regions (hilite, throat, etc.) which require a fine
computational mesh to insure a detailed analysis. For this reason, four
regions along each inlet contour and five regions along the boundary of
the analysis domain required individual geometric progressions. The
scale factor, I, and the number of cells, N, of each region must be

chosen to insure a smooth progression in cell length along each of the

boundaries.
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Figure 7.- Geometric progression regions along
inlet contour and analysis boundary.
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The second extension uses a ramping function to regulate the dependence

of the connecting function on the boundary slope. This connecting
function is an explicit functional relation used to establish the

transformation between the physical domain and the computational domain.

For the mixer lobe, this dependence was regulated to redistribute the

internal mesh points and reduce mesh skewness.

In the case of the subsonic inlet, it was found that a constant value for

each plane was sufficient to insure against mesh line cross-over.

Without ramping function

With ramping function

Figure 8.- Connecting function dependency
on boundary slope.
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Without ramping function

With ramping function

Figure 9.- Connecting function dependency
on boundary slope.
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The third extension utilizes the concentration function suggested by

Smith and Wiegel, but uses it to force the mesh in the direction of both
boundaries of the mixer lobe. More mesh was then needed to be linearly

added to fill the void created by this mesh concentration.

The inlet only required the mesh to be forced towards the inlet contour.
A concentrated mesh was assumed unnecessary along the spinner boundary;
it was felt that for a potential flow analysis the flow about the spinner
would not propagate upstream and affect the solution at the regions of
interest (hilite, throat, etc.). The mesh concentration for both the

mixer and the inlet permits flow analysis within the boundary layers.

Mesh concentrated towards
inner boundary

Mesh concentrated towards
outer boundary

Mesh concentrated towards
both boundaries

Figure 10.- Mesh concentration.
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Figure 11.- Mesh concentration.
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The fourth extension applies to the subsonic inlet only. It was
necessary to produce a computational mesh which possessed a smooth
progression of cell metrics and cell volumes in all directions to allow a
solution process of a flow analyser to use the grid efficiently. The
interior points of the computational mesh were "smoothed" by a multiple

application of a five point diffusion operator:

X(LNnew = @ {X(L SLI XL+ L XIL, - 1) +XIL, 1+ 1) -4 x X(L, 1) o‘d}

Y(L, Dnew = U.{Y(L-1,I)+Y(L+1,l)+Y(L,I+1) +Y LI+ -4 Y (L, ”ma}

The value of & and the number of times of application were determined by

trial and error.

The "smoothed" boundary points could not be determined from the five
point diffusion operator since one of the required smoothing points would
be outside the mesh region. Their values were determined from the
intersection of, the lines defined by the "smoothed" interior mesh points

and the boundaries.
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(L1 1) +X(L, 1 +1) -4 0 XI(L, 1) ok,]

X{Lnew = O {X(L SL) 4 XL+ 1,10 +X

YL Dpew = 0‘(Y(L-1.l)+Y(L+1.n+Y(L,|+1> FYILTI+1) —4aY (L, nold}

Figure 12.- Five point diffusion operator.
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slope of segment @

CYIL - YL 1 +1)
ToX(L 1) - XL 1+ 1) -

equation of segment (1)
Y- Y(LI) = MydX - X(L,1) @

slope segment  (2)

Y(L+1,l+1)-Y(L+2,l+1)
M2= XL+ 1, 1+ ) XL 2, 17)

equation of segment @
Y-YAL+ 1, 1+41) =Ma{ X- X(L+1,1+1) Q)

since a line thru segment @ intersects segment @ ,
the X's and Y's of equations @ & @ equal each other.
Solving for X:

X“-"*‘)new:M‘ X(L, D} -M {XIL+ 1,1+ 103+ Y(L+ 1, 14 1) - Y(L, 1)

M1-M
Solving for Y: 1 2

YL 1+ Dy = My { XIL, 1+ Vg - XIL DL+ YL, 1)

i‘\

W‘w
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Conclusions

The method of Smith and Wiegel can be used to generate meshes for mixer

Tobes and subsonic inlets that are compatib]e'with flow analysis codes

requiring a boundary fitted coordinate system. Successful application of

this mesh generator required development of procedures to distribute the
mesh points along the boundaries, to regulate the dependence of the
connecting function to the local boundary slope, to concentrate the mesh
into regions of special interest, and to modify the mesh grid so that it
possessed a smooth progression of cell metrics and cell volumes in all
directions. The method of Smith and Wiegel when coupled with the
extensions mentioned above has proven to be easy to use and control for

the inlet and mixer lobe geometries investigated.

The next step is the formulation of a truncation error monitor for
arbitrary meshes. This monitor will define where in an analysis domain
the grid length scales must be changed and by what amount in order to
equalize truncation errors over the entire analysis domain. Once these
errors have been equalized, this same monitor will use severé] levels of
grid distribution (of the above analysis grid) to then make estimates of
the absolute truncation error spectrum. This work is currently under

contract with the NASA Langley Research Center.
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‘N81-14714 =y
Grid Generation for General Three-Dimensional Configurations

K. D. Lee, M. Huang, N. J. Yu and P. E. Rubbert
The Boeing Company
Seattle, Washington

Abstract

The objective of the present study is to construct a suitable grid system
for complex 3-D configurations such as a wing/body/nacelle shape for the
colution of nonlinear transonic flow problems. Two approaches have been
explored based on Thompson's body-fitted coordinate concept. The most general
approach is to divide the computational domain into multiple rectangular
blocks where the configuration itself is also represented by a set of blocks,
whose structure follows the natural lines of the configuration. The
block-structured grid system is adaptable to complex configurations and gives
good grid quality near physical corners. However, it introduces algorithm
issues for the flow solution concerning the treatment of nonanalytic grid
block boundaries and nonstandard grid cells. These issues have been explored
in relation to the grid generation. A more 1imited approach treats a
wing/body configuration with only a single rectangular block in computational
space. In this treatment the issues involving nonstandard cells are avoided,
but other limitations on grid resolution appear. Both a linear and a
nonlinear system of grid generation equations have been developed including
methods of grid control. The linear method can generate grids of comparable
quality with order-of-magnitude Jess cost. Its disadvantage is the greater
possibility of i11-conditioned grids which, however, can be easily controlled
in the block-structured grid system.

Grid Generation Equations

1 Linear System
— - — — -
Xy +me+cx“ +DYE+EYH +Fx§+ G =0
T = (% ¥y, 2)

B to G: grid control
functions of £, n, and/or §

2 Nonlinear System
- L—» —> _Q_ — b R ~ > b -
A(XEE + J:AXE) + B(Xnn + JZB Xn> + C(X;—;— + ;2_‘C ?{) + -(DXEU + EYsg- + Fxn§> =0

A to F: coupling terms
functions of x, y, and z

P, Q, R: grid control

J = Jacobian of the transformation
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Figure 2. Comparison of grid structure
Lost corner - a physical corner transformed into a smooth point in the
computational space

Fictitious corner - a smooth point transformed into a corner point in the
computational space
Nonanalytic block boundary - grid lines across the block boundary are

continuous but not smooth
3-D) - grid lines merge together in the physical space
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Collapsed edge (
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Figure 3. Block-structured grid generation process

After defining the overall block structure, a one-dimensional grid generation
along the block perimeters produces a perimeter discretization. This provides
boundary conditions for a subsequent two-dimensional grid generation producing
grids covering the block surfaces. These in turn serve as boundary conditions
to produce three-dimensional volume grids filling each block.
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Figure 6. Comparison of grids nea
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Figure 7. Airfoil study i?
The ability to produce accurate solutions using the multi-block grid is
demonstrated in subsonic and transonic regions. Compared to the results from
the ring-type single-block grid, remarkable accuracy was obtained even when
the fictitious corner is located in supersonic regions. ATl the flow and
metric quantities are defined at the center of each cell and the artificial
density method is adopted for the density retardation in supersonic region.
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Figure 8. Surface grid for a wing/body
(single-block structure)

The use of the C-type grid provides smooth grid distribution near the wing
The body surface Tine on the symmetry plane coincides with a
One concern is grid quality at the

leading edge.

grid 1ine which consists of lost corners.

wing tip.
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Figure 9. Surface grid for a wing/body
(multi-block structure)

The use of a multi-block grid eliminates the lost corners in the single-block
grid of figure 8 and improves the grid quality near the wing tip, while
producing the fictitious corners and nonanalytic block boundaries. Its
ability to extend to more complex configurations is obvious.




Figure 10. 3-D flow solution

f A transonic solution for a wing/body combination is obtained using the
single-block grid and compared to the experimental results. The use of
body-fitted grid system improves the accuracy near the wing/body junction.
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Figure 11. 3-D flow solution

The body-fitted grid system can produce quite accurate pressura distribution

even on the body surface. Very coarse nose grid distribution prevents fine
pressure resolution in that region,

CROWN LINE PRESSURES FOR 747-200
AT M= .84 , 0 = 2,8°
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Effect of Grid System on Finite Element Calculation '
3 K. D. Lee and S. M. Yen
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801
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We have made detailed parametric studies of the effect of grid system on
finite element calculation for potential flows. These studies have led to the
formulation of a design criteria for optimum mesh system and the development of
two methods to generate the optimum mesh system., The guidelines for optimum mesh
system are:

1. The mesh structure should be regular.

2. The element should be as regular and equilateral as possible.

3. The distribution of size of element should be consistent with that of
flow variables to insure maximum uniformity in error distribution.

4. For non-Dirichlet boundary conditions, smaller boundary elements or
higher-order interpolation functions should be used.

5. The mesh should accommodate the boundary geometry as accurately as
possible.

We shall present in this paper the results of our parametric studies.

0y

if; . . . .
(uyv): Elliptic-Cylindrical Coordinate System
{Subscript @ Denotes Free Stream Condition)
- Problem I { ProblemIl{ ProblemIl
Type of
Boundary | Dirichiet | Neumann Mixed
Conditions
. Streom Velocity Velocity
Variable | gynction | Potential | _Potential
.y ot (1)} ¥V ‘ﬁz‘isw” $=dy
32 ) 2% 28
g% ot (2); ¥=0 E- £-0
33 - of _ 2% .
B8lat3)| ¢=0 | L0 |$+a(2E)=8
NP-453
Fig. 1. We choose three potential flow problems around an elliptic cylinder as
the test problems to evaluate and to compare computational errors.
In these problems, the computational domain is transformed into a
rectangular domain by using the elliptic-cylindrical coordinate system
(u,v). This corresponds to an isoparametric element in the physical
plane where element boundaries are curved isoparametric lines.
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Fig. 2.
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Element Number

/ Node Number
4

(c)

NP- 484

SN

Numerical solutions are obtained for the test problems using a sector
method. A sector is defined by a combination of elements surrounding
a node or nodes. It becomes the finite cut~off zone of influence of
the interior node or nodes. The solution procedure is to construct
the sector matrix for each sector and to iterate by sweeping all the
sectors. This method provides a way to avoid the tedious data
handling in constructing the system stiffness matrix and facilitates
the treatment of boundary conditions.

Types of Sectors shown are:

(a) Six Triangular Elements, One Interior Node.

(b) Ten Triangular Elements, Two Interior Nodes.

(¢) 8Six Triangular Elements, Seven Interior Nodes.

(d) Four Quadrilateral Elements, One Interior Node.
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Physical Plane

Fig. 3.

Computational Plane
AAAN ANAA/ ya ya
1/ N/
/
(@) (b) ©
r an elliptic boundary.
er of nodes and better resolution near

e elements is irregular. Table 1
btained for Problem 1 for the case of

grid system (a) has much larger

the structure of th
The
s more mesh points near the body.

Three different grid systems fo
The system (a) has a larger numb
the body, however,
shows the maximum percent error O
Dirichlet boundary conditions.
error despite the fact that it ha
This larger error comes from unfa
The unfair treatment results not only from the
isting of different number of
more types of sectors are used.
(c) is greater than that in
Only one

ir treatment of the influence of

but also from the use of several

neighboring points.
irregular shapes of the elements
types of sectors, i.e., sectors cons
elements. The error increases 2as
The fact that the error in grid system
grid system (b) 1is a further indication of this effect.
type of sector, which consists of six elements is used in grid
system (b), while two types of sectors, one with eight elements
and the other with four, are used in grid system (c). Note that
five different types of sectors are used in grid system (a).
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Fig, 4.
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The mesh structure of Fig. 3(b) is used to study the effect of element
shapes. The shapes considered are equilateral or isosceles triangles,
as shown here, in addition to the right-angled triangles, as shown in
Fig. 3(b). The maximum errors at both the body surface and the outer
boundary are tabulated. The evaluation of the effect of the element
shape on the computational errors is based on the comparison of these
two errors. For case (1) with right-angled triangles, the error at
the body surface is much greater; therefore, the error due to element
shape dominates. For case (2) with isoceles triangles, the outer
boundary error dominates. For case (3) with equilateral triangles,
the two errors are nearly equal. 1In fact, the error distribution is
almost uniform, Such a uniformity in error distribution is important
for any flow field computation.
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{a) Computational Plane

(b) Physical Plane

The effect of element size distribution was studied by comparing the
These two systems have the same structure; however,
of nodes in the system shown in Fig. 5 is not as uniform. The compar

son of errors is given in Table 3. The error for the system of Fig. 5
of nodes deviates significantly

Fig. 5.

is greater because the distribution
from the change of field variables.

@

error for two grid systems shown in Fig. 3(b) and Fig. 5 respectively
the distribution

3N



Fig. 6.
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(a) Computational Plane

"
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C

{b) Physical Plane

The error of the system with the triangular element is compared with
that with the quadrilateral elements. The interpolation functions in
both cases are of second order in the field variables, but differ in
their derivatives. The triangular element has a first order accuracy
while the quadrilateral element has a second order accuracy. The
results are summarized in Table 4. Even though the difference in error
in the stream function between the two cases is small, the difference
in errors in the velocities is appreciable. In comparing the errors

in velocities, it may be more informative to examine the maximum
deviations from the exact solutions. This maximum deviation is found

to be of 0[10—4] per unit free stream velocity for the quadrilateral

element and 0[10-2} for the triangular element.
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Fig. 7. Optimum mesh system submerged elliptical

cylinder ne8r & free surface.

cylinder of jirregular shape.

Fig. 8. Optimum mesh sys=em

Two methods of numerical transformation into a set of orthogonal

coordinates have been developed to generate an optimum mesh system which
Figs. 7 and 8 show examples of mesh

meets the guidelines listed above.
systems generated.
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Table 1.

Problem
Element Type
Mesh System
Outer Boundary

Problem I, Fig. 1

Triangular Element

F

u

Effect of Mesh Structure

ig. 3

out

=u_ + 0.75 1
o)

Mesh System (a) (b) (c)
% Error 29.4 0.979 1.64
Table 2. Effect of Element Shapes ORICTNAL PAIE T
AT T
Problem Problem I, Fig. 1 OF POOR QUALI

Element Type

Triangular Element

Case (a) (b) {c)

Mesh System Fig. 3(b) Fig. 4 Fig. 4
. Right-angled Isosceles Equilateral
Element Shape Triangles Triangles Triangles

% Error 0.979 0.254 0.172
near body

% Error at
Outer Boundary 0.363 0.363 0.174

Uout uo+0.75 m uo+0.75 s Uy T

S

a

v

i
iy

C
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Table 3. Effect of Element Size Distribution

Problem . Problem I, Fig. 1
Elcment Type : Triangular Element

Number of Nodes : 13 X 13

Outer Boundary @ U =u_+ 0.757

out o
Mesh System Fig. 3(b) Fig. 5
% Error 0.979 6.652

Table 4. Effect of Element Type and Interpolation Functions

Problem . Problem I, Fig. 1
Number of Nodes : 16 x 16
Quter Boundary PoUgut T u, * L
Element Type Triangular Quadrilateral
Mesh System Fig. 3(b) Fig. 6
Stream Function 0.856 0.710
% Error u-Velocity 34.95 1.435
v-Velocity 33.98 1.096
Maximum u-Velocity 0.010 0.0004
Deviation | v-Velocity 0.068 0.0004
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SOME ASPECTS OF ADAPTING COMPUTATIONAL MESH
TO COMPLEX FLOW DOMAINS AND STRUCTURES
WITH APPLICATION TO BLOWN SHOCK LAYER
AND BASE FLOW

T

PEDA Corporation

C. K. Lombard, M. P. Lombard, G. P. Menees, and J. Y. Yang
Palo Alto, California 94301

The present paper treats several practical aspects connected with
the notion of computation with flow oriented mesh systems. Simple,
effective approaches to the ideas discussed are demonstrated in current
applications to blown forebody shock Tayer flow and full bluff body

shock layer flow including the massively separated wake region.
The first task in constructing an adaptive mesh is to jdentify the

¢

gross flow structures that are to be captured on the mesh and to work
Among the properties the mesh

out a grid topology that conforms to them.
topology ought to admit are both computational accuracy and algorithmic

compatibility. Both these properties are served by grids that feature
large connected segments of natural or computational boundaries fitted
But it is neither

by mesh surfaces or curves of constant coordinate.
necessary or always desireable that the entire surface of a particular

boundary feature be fitted by a single surface segment of one family
of coordinates. For accuracy, convenience, and particularly from the
point of view of modern algorithms that embody such features as vector

organization, spatial splitting, and implicit solution, it is very
desifeab]e that the mesh be composed of identifiable continuous grid
377
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Tines, not necessarily of homogeneous coordinate type, that run from
boundary to boundary.

These notions are illustrated in the application to high Reynolds
number full bluff body flow in axisymmetry. Here the basic structure
of the turbulent flow is well known, Figure 1. The computational mesh
that we have adapted to the flow is shown in Figure 2.

We note that in the mesh shown the computational boundaries —
axis of symmetry, bowshock, body, and outflow plane - are all fitted by
continuous grid lines. The mesh is so constructed as to be flow aligned
over the four principal regions — forebody shocklayer, base recircula-
tion, outer inviscid wake, and inner turbulent viscous wake. We note
the wrap around mesh provides continuity of the boundary layer and
shear layer in the aft expansion zone. The continuity of the mesh . =
coordinate topology is broken in the recompression zone which embeds
a saddle surface of the turbulent flow solution at the interface of
the recirculant base flow and downstream viscous wake. The singular
topology of the mesh in the base recompression zone js illustrated in
Figure 3. The viscous wake core box of the mesh, which provides con-
tinuity across the viscous-inviscid wake shear layer, can be regarded
as a separate sheet of the topology with a cut taken along a line from
the singular point down through the recompression zone to the wake axis.

The cut forms part of a set of construction lines embedded in the
mesh, Figure 4. It is central to the method described that these lines
which largely define the base mesh structure are also representative

of the flow structures which the mesh is to fit. Thus in the approach

il

presented here the construction lines serve the role of supplemental

(



imaginary boundaries along which mesh nodes are distributed according
The resulting bounded

("HM'I‘

to the usual criteria on ordinary boundaries.
domains can then be filled in with computational grid by any of a large
1,2,3,4

variety of means, for example
though not optimized in detail, and was simply constructed in a single

The particular grid shown in Figure 2 is quite adequate in concept,
pass using one dimensional distributions along straight coordinate lines

b

required they have been conveniently accomplished using a universal
In the program, for the stretching

between boundary points. Where non-uniform distributions have been
5

stretching function due to Vinokur™.
function as we have adapted and use it, the total interval along the
coordinate line and the (approximate) first mesh spacings from either
The function then returns the dis-
As convenient, the stretchings are
The actual X and Y coordinates

end of the interval are specified.
tribution between boundary points.

done variously in X, Y, or S (arc Tength).

of mesh points are then found by the functional relationships of points
on the given coordinate curve, which of course can be piecewise defined.

L

Where fictitious boundary lines are to be embedded in the mesh, actual
boundary points are defined on the connecting coordinate lines at half-

first-mesh-cell intervals away from the fictitious lines.
A virtue of meshes constructed of distributions along analytically

defined coordinate curves, and particularly straight lines, is that
differential displacements of boundary points are readily functionally

transformed through kinematic relations into corresponding displacements

of the intervening grid points so as to leave invariant the relative
For

379

distributions of mesh points along the given coordinate curves.
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the mesh shown in Figure 2, we presently use this property to analyt-
ically deform the outer flow portion of the mesh in relative conformity
with the moving, fitted bowshock.

In a similar manner it is intended in future work to differentially
adapt the interior base mesh to the changing flow solution by moving
the underlying construction 1ines. A central requirement to do this is
to define relationships tying the construction lines to the base flow
solution. In this regard it is intended that the X coordinate of the
mesh singularity correspond to the axial Tocation of maximum wake pres-
sure. Presumably, the Y coordinate of the singularity which lies on
the construction line through the viscous-inviscid wake shear layer ought
to be determined from a fit to the axial velocity gradient,

Along the same lines, however, we have developed an adaptive mesh
for the blown forebody shock layer which is intended to represent flow
over an ablating body. Here we wish to distribute points in predetermined
ways in the blown layer, the shear layer interface, and in the outer
flow region. In this case a construction line demarking the interface
between the blown and outer flow regions can readily and unambiguously
be fitted to the zero of the stream function based on mass flux and this
is what we have done.

We note in connection with the blown shock layer that the associated
flow has regions of steep gradient in density, velocity, mass flux, and
temperature and that these properties by no means vary together. We
take it that an accurate calculation ought to resolve all these features.
Thus we think for this application a mesh distribution approach based

on the integral of gradient of a single flow property such as Dw_yer6
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has demonstrated is not evidently optimum. A similar distribution
based on weighted gradients is certainly feasible but this would appear
to be more tedious to implement than a compromiﬁe ad hoc distribution
tied to key features of the flow structure as we have done. In the
paper we shall present curves showing the variation of relevant flow
properties across a blown shock Tayer and show how the simpie ad hoc
distribution approach we use results in satisfactory resolution of all

properties.
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Figure 2.- Full bluff body mesh.
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An Analytical Transformation Technique for
Generating Uniformly Spaced Computational Mesh

Youn H. Oh
Hughes Aircraft Company
Abstract

An analytical transformation method which can map arbitrary physical coordinate
grid distribution into desired computational coordinate with uniform grid distri-
bution is derived. The transformation function and its higher derivatives are
differentiable. Salient features include; 1) precise control of grid sizes, 2)
more than one location of clustered grids, 3) exact positioning of particular

computational nodes in the physical plane, 4) ensuring several patches of uni-

formly spaced grids in the physical plane for the higher accuracies (such as at
the boundaries), etc., while keeping the variation of grid spacing continuous to

avoid numerical instability.
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TRANSFORMATION FUNCTIONS

Coordinate in physical plane.

Coordinate in computational plane.
Nodes are uniformly spaced.

(

Parameters Specified Program Computed
N = Number of pivot
n. o (i=1, 2, -=-N) 5
P; —= FIED — oy, S dY
n dn
@ (i=1, 2, ---N)
B.' (.i:l, 25 "‘N)
. \ ;Trrvrj
f(n) = .glq = 30 + %E [8 erfcg ;]—1— (n-npi)$- ;sign (’i)l . lssJ )
i=1
N B.a 1
v =iz=1 éyl [ - % (nmin " Mo )erfc; % (nmin 5 )% o/":
-31_( . )%2
x. min P.
e 1 1 ~%(w-npi)erfc;a—7’i—(n-npi 2
-gc%(n ; np.) }2 N
&N s o
(n N 71min) “min
3%y .-% ﬁ X e-%"‘li(n ) npi>€2
n? i=1 v %
i



BUILDING BLOCKS OF TRANSFORMATION FUNCTION f(n)

@M

"piyot points," particular specifiable values of n where

n (i=1, 2, ==-N) = "F
Py f'(n) assumes local maxima.
Y = 2.326, a convenient constant for the scaling o
o (i=1, 2,---N) = "Width parameter,"” specifies width inn in which 90 percent
of grid size variation takes place around the pivot npj.
a<0 specifies increasing grid sizes, and o>0 specifies
decreasing grid size at pivot UNE
By (i=0, 1,2---N) = step heights for the pivots, which decides the ratio between
”* the sizes of node spacings in yi on both sides of the pivot.

oL
1 (‘__.. I:i! -——a—‘
&y 2.326
£(n) = = erfc % _—i (n npl) % -8 when a; > 0
(a)

[ O ot
i

£(n)

0.358. 1

f(n) = Tl erfc —
i
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THE EFFECTS OF CONTROL PARAMETERS, EXAMPLE 1

Grids are clustered only at Nmin With a single pivot.

Specified Parameters

it

Total node points 51

u
[

Number of pivots

"p1 = 0.6
1 =-0.2
B _

g = 0.1
Bl = 0.4

Both ends of physical plane nodes have constant spacing.




~r EFFECTS OF CONTROL PARAMETERS, EXAMPLE 2

Grids are clustered only at nma)(with a single pivot.

Specified Parameters

Tota} node points b1

1
o

Number of pivots

B "o, = 0.3

= 1 = 0.6
g -

o = 1.0

By = 0.9

Grids near y are uniform but not those near y . -
max min

e

fop
| | ]
| N, OF GRID = S ND. OF PIVDT= | BE=  |.PO0GD 7
a )= B
I AG)= 0608
BJ)= 0.0
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EFFECTS OF CONTROL PARAMETERS, EXAMPLE 4
(large |a| compare to

Figure demonstrates smooth variation of grid sizes

pivot spacing) with multi-pivots.
Specified Parameters

Total node points = 51
Number of pivots = 7
80 = 0.05
n. =0.1, o1~ -0.14, 87 = 1.
P
= 0.14, = 0.14, B8, = 1.
“pz a2 2
by =0.36, a3~ -0.14, 83 =1
np4 = 0-4, 0.4 = 0-14, 84 =1
» ﬂps = 0-625 35 = '0-149 85 =1
~ TPy 0.66, ag = 0.14, 8g = 1.
np7 = 0.88, oy = -0.14, 87 = 1.
\L i HK\\
0
fop
NO. OF GRID = SI ND. OF PIVOT= 7 B@= @.05P0@ 4
S(d)= 0,188 B.148 B.36R B.40 B.620 B.GE@ B.BHA
A(J)= -0.140 B.14B-B.140 @.147-8.148 B.147-B. 148
B(J)= |.MBB |.BAM |.2@@ |.MM@ {.9@@ !.B2@ .90d

(TN
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EFFECTS OF CONTROL PARAMETERS, EXAMPLE &

Figure demonstrates discontinuous variation of grid sizes (small |a]
compare to pivot spacing) with multi-pivots.

specified Parameters

‘ (T

[ —

NO. DF GRID = 51  ND. OF PIVOT= 2 BE= B igueg
5(d)= P.6M@ B.970
Rd)= -p.g@l -n.pa1
B(d)= D.200 B.700
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CONSTITUTIVE RELATIONS FOR THE
DETERMINATION OF B'S

= “Cluster Points," specifiable values of n which must

coincide with particular predetermined values of

(k=0, 1, 2, --K) of corresponding k's. The values
also) may or may not necessarily be

ﬂCk (k=0, la 2! == K)
Yek
nck (hence y.

node points.
= Ratio between the immediately neighboring 2y minima
and maxima at the cluster point k.

P (k=0, 1, 2, --- K}
2K simultaneous linear algebraic equations for 2K unknowns, BO*, Bos By === Boy

are solved by the program "FIXBY".

* 1
- P
0

B =
1 Py

1 -0
[¢]

2k-1
a1 - ok)[ ;1 - sign(ay) - % BO - %sign(ai)%ei]

i=2

(N

- sign(:x:]() BZk =0, (k=1,2,3,..... X)
1l - oy 1T M
5 E[T %el (nck)- @1 (nmin)%-%sign(al)l

o]
1

o ) )

{(qck - nmin) *

* li(nck B nmin)]}ﬁo 2 '21.’— [
i=2

- %Sigﬂ(’li)l *lg(nck - nmin)]sl

..K)

sy, - Ypy, (k= 12,3,
393
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APPLICATION, EXAMPLE 1

The objectives were (1) to transform the physical coordinate y in the
range of 0 = y < 2.5 to computational coor-
dinate n in the range of 0 < n < 1.0;

(2) to obtain grids clustered at y=0 and y=1 with
the same order of minimum grid sizes and the
same rates of increase of grid spacing Ay away
from y=0 and y=1.0;

(3) to use a total of 41 nodes where y=0, 1.0, 2.5
which are nodes in the physical as well as in
the computational plane (i.e., cluster points);
(4) to have grids near ¥=2.5 which are fairly uniforr

Program "FIXBY" is used to compute Bg» 81, Bo, 83, with the specified input
values;

np; = 0.2, 0.425, 0.825

@; = -0.17, 0.17, -0.17 for i = 1, 2, 3
ne, * 0., 0.625
yey = 0., 1.0

G 0.0025, 0.0015 for k = 1, 2

The choice of Mp; decides the way in which the number of nodes are
partitioned into différent regions and the choice of aj decides the ratio
with which the grid size varies.

Computed B's are

8; = 0.011071747, 4.417627, 4.4220557, 8.5569778 (i=0, 1, 2, 3)
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5(d)=
R(4)=
B(d)=

(M

NO. PIVOT= 3 Bl-=
i 825095004
-@1. 1 780RRURa

(LUSTER= 2
B.55697778I

Hi ND.
020072000 @ H25A0unad
puRa @, 1 THaunaER
4. 4220556499

-B. 171p¢
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APPLICATION, EXAMPLE 2

The objectives were to have (1)

(2)

Inputs to program FIXBY were;
Npy = 0.3, 0.7
0.17, -0.17 (i=1,2)

aq =

ne; = 0.5
Yy = 3

p, = 0.25

1
Computed 8's were;

a total of 41 nodes;

variable ranges of 0 £ y < 8.0 and
02 n 1.0, respectively;

one interior clustering point at y=0; and

grids near y=0 and y=8.0 which are
fairly uniform.

C.‘

8; = 8.5714166, 6.4285625, 13.095257 (i=0, 1, 2)
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NO. GRID = Hli

G(d)= e alaalalalaty
ACd)= g170RRuARR W, 1 70dnRue
B(d)= f.42BSG724BR  13.H95256354
¥q)

NO. (LUSTER=
Il alalulal

WV RERE!

ORIGINAL i
oF POOR QUATLLY

B.571416613

ND. PIVOT= 2 BE:
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FLOATING GRID CLUSTER REGION 7

When pivots are sufficiently separated so that there will be a region of
"f(n) = constant" between every pivot (small |a| case) is a particular case,
A separate program "FLOAT" is programmed for this case. Floating the location
of clustering and varying the degree of clustering as well as locating new
clustering regions during the computation (of a finite difference solution
method) can be conveniently accomplished with this code. Figure shows a trans
formation of "FLOAT" code with a particular set of input parameters. “FLOAT"
re?iitribut?d the uniform computational grids n in the physical plane from
_yJ. 1) to '_vj 2).

NO. DF (LUSTER= Y

LIS | I8 3] 1y}
K{d)= Y L] Y Yy
L{d)= 2 2 2 2
H{J)= R.SER B.268 B.283 B.5BY
4(7)(2)
\ )
\\\\L@ \\\ \\
| \H 1
Aﬁvy) Z
L
ND. OF GRID = €I K0. OF PIVD1= [ Bd=  §.2duag
Sd)= B.7RY
Ald)= ~-0.284
B)= B.780
N

398



¢

"

@

EN81-14718

APPLICATION OF THE MULTIGRID METHOD
TO GRID GENERATION

Samuel Ohring

Computation, Mathematics, and Logistics Department
David W. Taylor Naval Ship Research and Development Center
Bethesda, Maryland

ABSTRACT

Two different geometries

The multigrid method (MGM) has been used to numerically solve the
pair of nonlinear elliptic equations commonly used to generate two-

dimensional boundary-fitted coordinate systems.
one involving a coordinate system fitted about a circle and
MGM uses a nest of

are considered:

the other selected for an impinging jet flow problem.

grids from finest (upon which the solution is sought) to coarsest and is
Thus most

based on the idea of using relaxation sweeps to smooth the error (equivalent
rids to eliminate longer

F

to eliminating high frequency Fourier components of the error).
Two different relaxation schemes are

of the computational work is done on coarser subg

wave length components of the error.

tried:

greater computational speed.

scheme on the fine grid only).
more effective than SOR as more accuracy 1is dema

grids, or more grid points, are used.

found that MGM is two to three times faster than SOR in computin

the four—color relaxation scheme as applied to the impinging jet probl
Perhaps this is due to the effect

advantage of MGM over SOR is not as great.
of a poor initial guess on MGM for this problem.

For the accuracy required here, it is
g time. With

one is successive point overrelaxation and the other is a four-color
scheme vectorizeable to take advantage of a parallel processor computer for
Results using MGM are compared with those

It is found that MGM becomes significantly
nded and as more corrective

using SOR (doing successive overrelaxations with the corresponding relaxation

em the
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The multigrid method (MGM) [1] can numerically solve linear or non- A
linear elliptic partial differential equations more rapidly than conven-
tional means of solution such as successive overrelaxation (SOR). MGM can
be applied to the numerical solution of partial differential equations not
amenable to numerical solution by fast direct matrix solvers such as
diagonal decomposition. Thus it was deemed desirable to apply MGM to the
numerical solution of the system of nonlinear elliptic equations commonly
used to generate boundary-fitted coordinate systems, especially when the
number of grid points is large. The standard elliptic equations for a typical

mapping, shown schematically in Figure 1, are

]
o

- 2
Ll(x,y) ox 28x,  + Yxﬂn +J (ng + an) (1)

£ En

1
<

— 2
L, (x,y) ZBygn + Yo +J (Py‘E + Qyn) (2)

e

where

o

(:‘

= 2 + 2 = <+
¢ xn yn B XEXn yiyn
(3)

= 2 2

= X2 + J =x - X
VTR T Y en T *ne
and P and Q are functions of £ and n. Dirichlet conditions are specified on
all boundaries of the computational space including the interior slit (which
maps to the body in the physical space). Each side of the slit has a set of

Dirichlet data with a common value for each of the endpoints of the slit.

The basic idea of MGM is to do most of the computational work on coarser
corrective grids containing far fewer points than the finest grid upon which
the solution is sought. The grids form a nest, each coarser grid having
twice the mesh spacing in each coordinate direction of the previous finer
grid. In Figure 2 which represents the Full Approximation Storage scheme of
[1]: u = (x,y), L = li;} such that Eqs. (1) and (2) become Lu = F = {8],

12kiIM(k representing the kth grid with M the finest), ¢ = (x,y) on the

boundaries of the computational space (Dirichlet values so that A is an

[1] A. Brandt, Math. of Comp., Vol. 31, No. 138, April 1977, pp. 333-390. <7
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identity operator) and superscripts refer to discretized quantities on the kth
grid. (All operations involving ¢ in the flow chart can be ignored, since the
Dirichlet conditions are constant on all the grids.) The main idea behind MGM
is that relaxation sweeps are a smoothing process which eliminate the highest
frequency Fourier components of the error on any grid. First, starting with
an initial guess for the solution, several sweeps are carried out on the
finest grid to eliminate high frequency components of the error. The smoothed
out error is represented by the residual 1 = LMIﬁi— LMub4 and the correction
UM--uM (where UM is the exact discrete solution on the finest Mth grid). The

residual, consisting mainly of longer wave-length Fourier components, is dealt

with by solving its coarser-grid approximation

LM—lUM—l_ LM_llM-luM _ IM—lfM (%)
M M
M-1 . . —k . .
for U , which is represented by F~ for Kk =M-1 in the lower right box of
Figure 2. The symbol IE—l means interpolation of a quantity from the kth
grid to the (k-1)st grid. Eq. (4) is solved in the same way as the original
equation on the finest grid. TIf solution of (4) is obtained after several

relaxation sweeps, the coarse grid approximation UM-l-—IE-lLPI to the smoothed

M M M-1 M-1 M
(u u

out function UM-uM is added to uM. That is uM*-u + IM—l -'IM

)}, which
is the expression in the lower left box for k=M. The new uM is a better
approximation to the solution UM and is the starting point for more relaxation
sweeps for the original set of Egs. (1) and (2) on the finest grid. If conver-
gence 1is obtained, the process 1is complete; if not, the process returns to the
coarser grid to sweep the residual equation again. 1f it doesn't converge
after a few sweeps, then the next coarser grid is used to eliminate long wave
length errors for the residual equation, etc. Each residual equation has a
corresponding residual equation and correction on the next coarser grid. (The

residuals were weighted locally as in [11.)

Figure 3 shows computer drawn body-fitted coordinate systems generated
to a specific accuracy using MGM and SOR (the two coordinate systems coincide).
The relaxation scheme used was successive point overrelaxation. According to
the notation used in Figure 1, m and n are 81 and 21, respectively; the slit

end points are (£33,n13) and (€53,n13), respectively; (Xl’yb) = (-8.4, -8.0)
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and (Xr’yt) = (7.6, 0.0); Ax = .2 and Ay = .4; At = An = 1; and the body is haad
a circle of radius one centered at (x,y) = (0, -3.2). P and Q were set to

zero in Egs. (1) and (2). An experimentally determined, essentially optimum
overrelaxation factor of 1.7 was used in the successive point overrelaxation
sweeps in both MGM and the SOR method. All coarser corrective grids contain
grid points on the slit. The initial guess for x(&,n), y(&,n) in the computa-
tional space is obtained by extending the Dirichlet data at the ocuter boundarie:
throughout the space except at the slit, where the body Dirichlet data are used.
The convergence criterion for the solution of Eqs. (1) and (2) was that both
Ly-error norms (one for each equation) be less than an input value ]]E!] .
(This will be called satisfaction of []EIILZ.) For Figure 3, ilEfle = .001.
To satisfy this criterion, MGM used 32.5 WU and 16.08 CP seconds compared to
66.0 WU and 22,17 Cp seconds for SOR. (A work unit (WU) is the equivalent of
one SOR sweep on the finest grid, and CP seconds refer to central processor
seconds used on the Texas Instruments Advanced Scientific Computer (TI-ASC).)
For IIEIILZ = .01, MGM used 20 WU compared to 29 WU for SOR; CP time was the
same for both methods (due mainly to the additional computational work in R
computing residuals in MGM). The results show that the effectiveness of MGM ~7
increases (compared to SOR) as the error norm decreases. This is consistent

with the fact that the remaining longer wave length errors are eliminated more
slowly using SOR. The parameters § = .3, [ = .3 were used to control the flow

of MGM. The parameter § determines the convergence test on each grid and the
parameter [ determines how fast the convergence must be (how fast the high

frequency components are eliminated) on each grid. Whenever

g < (’[Ellgz)i+l/(JlE!|52)i on a kth grid, MGM will then process on the coarser

k )i+l
Ly
scripts i,k refer to the ith relaxation sweep and the kth grid, respectively.)

(k-1)st grid with an error norm to be satisfied equal to 6([]EI| (Super-

These parameters are used as in [1], have a range (0<8<1; 0<¢g <1), and
greatly influence the performance of MGM. The present choice is not necessarily

optimum but was the best of a number of choices tried in the unit square.

Figure 4 shows a computer drawn body-fitted coordinate system, similar

to Figure 3, generated with MGM and satisfying [[EIILZ = .001. The grid

parameters are (see Figure 1): m and n equal to 129 and 81, respectively; I
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slit end points of (€49, n49) and (&81, ”49)’ respectively; (xQ,yb) =

@

(-7.68, -8.0) and (Xr’yt) = (7.68, 0.0); Ax = .12 and Ay = L1 AL = 46n =1
and the circle of radius one was centered again at (0, -3.2). To satisfy

HEHLZ = 001 MGM used 21.863 WU and 70.67 CP seconds compared to 102.0 WU

and 217.83 CP seconds used by SOR. This represents a significant saving of

computer time by MGM. To satisfy I|E‘|L = .01 MGM used 10.863 WU compared
2

to 17.0 WU used by SOR with CP time essentially the same. These results,
along with those for Figure 3, show that MGM is more effective, compared to
SOR, when more corrective grids are used and more accuracy is required.
Figure 4 has five corrective grids and Figure 3 has three corrective grids
(including the finest). The parameters § = .03 and £ = .2 controlled MGM
for Figure 4. Choosing smaller § and ¢ makes it more likely that all the

coarser corrective grids will be used, which is desirable.

Figure 5 shows a computer drawn body-fitted coordinate system generated
using MGM and satisfying |1E||L2 = .001. SOR was also used to generate this
grid and is in excellent agreement with MGM. The geometry is motivated by

— an impinging jet flow problem that is planned to be run on this grid. The
flow from the channel interacts with the solid body on the right. The
computational space has the same shape as the physical space except that
the body is replaced by a slit. Excluding the channel, the grid consists of
137 points in the horizontal direction by 97 points in the vertical direction.
The grid for the channel itself consists of 25 horizontal grid points by
33 vertical grid points. The slit (and body) are 49 grid pdints long.

Corner points on the body and channel have been excluded from the grid.
Exponential grid spacing was used along various parts of the horizontal and

. vertical boundaries of the grid. 1In an attempt to preserve this boundary

i spacing in the grid interior non-zero P and Q were used. Although grid lines

E are still bent near the boundaries, they are not bent as much as when P = Q =0

was tried. To compute this grid (which had 4 corrective grids, including the

finest) MCM was "vectorized" on the TI-ASC since it is a parallel processor

i machine. To accomplish vectorization, which cut computing time by a factor of
i six, a four-color relaxation scheme was used (i.e., even points of even rows

were relaxed simultaneously; odd points of even rows; etc.). With this scheme

Cﬂﬂ\\ﬂht
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MGM used 82.781 WU and 45.57 CP seconds to satisfy [IE[| = .001 when using
an overrelaxation factor (RF) of 1.8 on the finest grid and relaxation factors
of 1.6, 1.4, and 1.2 for the progressively coarser grids. (Varying RF in this
way improved MGM's performance.) SOR (with the four-color scheme) used 170.0
WU and 76.68 CP seconds using a relaxation factor of 1.8, which is about
optimum for this SOR. MGM used 60.641 WU and 36.67 CP seconds to satisfy
IIE’|L2 = .001 when RF's of 1.6, 1.4, 1.2, 1.0 were used on progressively
coarser grids (with 1.6 used for the finest grid). With these RF's MGM used
26.016 WU to satisfy [|EI| = .01 compared to 82.0 WU used by SOR with

= 1.8. The parameters 6 = .05, n = .95 were used for MOM which was
divergent for n < .9. WMGM should perform better with a better initial guess
than used here. (The horizontal straight lines in the initial guess were

discontinuous at the right-most boundary.)
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GRID EVOLUTION IN TIME ASYMPTOTIC PROBLEMS

* *%
Man Mohan Rai and D. A. Anderson

Iowa State University
Ames, ITowa

INTRODUCTION

Coordinate system selection is an important consideration in
the time asymptotic numerical solution of any fluid flow or heat
transfer problem. In solving such transient problems, the physical
domain is usually transformed into a rectangular region with bound-
aries coincident with the physical boundaries. Once this trans-
formation is completed, the transformed equations of motion are
integrated until steady state is attained.

Most methods of generating systems of coordinates used in
numerical solutions have been developed for elliptic problems. In
these methods, the physical domain boundaries are known and the
coordinate mesh is determined initially. Generally, the geometry
of the mesh is not changed during the computation. Probably the
most well known of these methods is the one developed by Thompson
et al. (1) in which the transformed coordinates are obtained as a
solution of Laplace's equation in physical space. A number of
other investigators (2, 3, 4) have developed schemes which can be
used to generate appropriate cnordinate systems vsing the same

general idea.
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Unfortunately, the solution of a separate elliptic equation
is not conveniently included in the solution of a time—dependent
set of equations. Hindman et al. (5) solved the two~dimensional time-
dependent Euler equations with a truly adaptive grid scheme. The
grid motion in time was generated by taking the time derivative of
the governing differential equations of the coordinate mapping which
was the same as that developed by Thompson. This provided the neces-
sary grid speed equations which were then integrated to obtain the
grid motion as a function of time. Hindman's work did not consider
techniques which might be used to modify the location of the interior
points depending upon the local solution. The interior point motion
depended solely upon boundary motion.

A technique for locating mesh points according to local flow
information was presented by Dwyer et al. (6). This technique is
similar to that used by Olson (7) and involves redistributing the
mesh points at the end of any number of integration steps. This
method does not permit a simple time integration of a differential
equation similar to the equations of gas dynamics for the motion of
the mesh points. It is the purpose of this paper to introduce a
new technique which provides a simple way of moving the mesh points
in physical space and reduces the error in the solution relative to
that obtained using a fixed mesh.

Pierson et al. (8) have also worked on the generation of grids
which minimize error, but their technique involves the solution of
a minimization problem. The extension of such a method to higher

dimensions with the accompanying increase in the number of mesh points

G !



is not feasible due to the large amounts of computer time necessary

¢

? B to solve minimization problems. The method to be discussed in this
paper is very simple in application and takes only a fraction of the

time necessary to solve a minimization problem.

THEE METHOD

To describe the basic idea employed in this paper, we consider
transient problems in one space dimension. Let the physical space
coordinates be x and t and let the computational space coordinates
be & and T where

T=t

g = &(x,t)

We require the calculation of the absolute value of the deriv-

W

ative ([ugi) of some representative physical quantity (u) such as
veloeity, pressure, or temperature and the average value of the same
derivative (Iuglav) for all mesh points. Given a certain number of
grid points, truncation error can be minimized by allocating a number

of points to the regions of large gradients and fewer points to the

regions of small gradients. For an equispaced grid, a relocation of

i points in order to minimize error can be carried out. This can be

achieved if points at which ‘ugl is larger than luglav attract

other points and points at which lugl is smaller than !uilav repel

other points. In other words, every pcint induces a velocity at
! every other point, the magnitude and direction depending upon the

local 'excess gradient'. It is logical to assume that the further a

d Iﬁ!gy

; point A is from a point B, the smaller the effect of point A on B.
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n
This suggests that a 1/r law should be used. From the above con-

siderations, it is possible to write

K[ y [leely < ey o [loels - '“s’av]]

€= x| 2] : - 2 .
j=i+l ri,j j=1 ri,j
i=2,3.,. (N-1) (1)
(xT)i = (Ei)T /(Ex)i (2)

where 1 1is the point at which the velocity is being determined,

'N' is the total number of grid points, r, j is the distance between

»

points i and j in (£,T) space and 'K' and 'n' are constants.

c

The value of K can be determined if the maximum velocity that any
point can achieve is specified. Convergence of the grid to a steady-

state configuration is obtained by specifying a maximum value for

Strong analogies can be found between the present formulation
and treating the grid points as point electrical charges whose indi-
vidual charges are proportional to the local 'excess gradient’.

The charges move so as to minimize the quantity

D% [Tugly - Il ] ?

j=1

the minimum value of E being zero.

m
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The collapsing of two computational space points into one physical
space point is not possible because of two reasons:

(a) The driving force g,
g = lugl - !ug‘av (3)

becomes negative when two points get very close and, hence, the points
begin to repel each other.

(b) The term EX in Equation (2) gets very large as two points
get very close. Hence, for a finite (Ei)T, (XT)i tends to zero; i.e.,
the closer two points get to each other, the more difficult it becomes
for them to move toward each other. However, Equation (2) does not
prevent extreme stretching of the mesh in physical space, thus giving
rise to errors in the calculation of the transformation metrics. The
details of preventing extreme stretching for the problems solved in
this paper are presented in the section on results.

In the above discussion the driving force g is defined in terms
of local and average first derivatives. A better formulation would be
one in which g 1is defined in terms of quantities which are more
representative of truncation error. One such quantity is the third
derivative of u instead of the first derivative. The appropriate
choice depends upon the order of the method being used and the problem
itself. The flexibility in choosing the driving force and the quan-
tity to be minimized is a particularly attractiva feature of the
current scheme.

Two constants K and n appear in Equation (1) and a third one,

Kmax defines the maximum value that K can assune. The constants
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K and Kmax together determine the grid speed. When K 1is less than

max

K » the grid speed is determined by & alone and when K 1is greater

than Kmax’ the grid speed is determined
constants are chosen empirically, 1In c
should bear in mind that very large val
oscillations which in turn result in 1o
small values of Kﬁax result in low gri
longer convergence times are observed.

by knowing the maximum velocity that an
putational space [(gi)T]max' The rule

[(Ei)T] max are the same as those tha

A variation of the constant n
difference in the final grid in the one
small difference in the two-dimensional
tions for convergence increases slightl

used. However, larger values of n im

for any given point. Consider a value

2
n log(2)
When r = 2,
1 2
- = 10
r

This implies that only points adjacent

icant contribution to the velocity of t

only by Kmax' At present these
hoosing these constants one
ues of K result in grid
max

nger convergence times, and very
d speeds and hence, once again
The conmstant K 1is calculated
y point can achieve in the com-
s that povern the choice of

t govern the choice of K .

max

between 1 and 8 did not make any
—-dimensional case studied and a
case, The number of itera-
y when larger values of n are

Ply a smaller range of influence

of n,

to a given point make a signif-

hat point. Hence, Equation (1)

= =

A "4
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(4)

becomes
€ = X ‘I“g|i+1 - 1“5'1-1|

The use of Equation (4) instead of Equation (1) greatly speeds up the

grid generation process.
EXTENSION TO MULTIDIMENSIONAL PROBLEMS

The method can be extended to problems in two and three space
In particular, for a problem in

dimensions without any difficulty.
dimensions, let the physical coordinates be given by (x,¥,t)

two space
and the computational coordinates by (&,n,T) where

T=t¢t
£ = E(x,¥,t)
n = n(x,y,t)
|U£‘ and |u | for every point and
for every column of points

We now require the calculation
lu_|
n'av

for every row of points and
The grid speed equations are given by

lugl oy
as in Figure 1.
M N IU | IU I
(‘c—:i .)T = Kl > g k;Q' g avg]
) 2=1 | k=il o

£ [t

-/ . .

k=1 r

‘W
1

(!
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N M f l
o5 [
; D, = K /L =
13T 2% T Ladih " (5)
j-1
5 [l ‘“n’avk]J
) =1 "

r o= \J/(i—k)z + (3-0)2

where Kl’KZ and n are constants, N the number of points in the

§ direction and M the number of points in the N direction. The

1 i,j T] max

and [(ni,j)T] nax Trespectively. Grid convergence can be achieved by

values of K., and K2 can be determined by specifying [(E. )

specifying (Kl)maX and (K2)max as in the one-dimensional case.

We also have the relationships

Gi,57r = Gx + 8045
(6)
(ni’j)T = (x  + nny)i,j
which yield
oy [, 5E; Py - €y 50y ),
Ui,5 7 =

o/
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mesh points

in the one-

SR— From Equation (7) it can be seen that the collapsing of
and the overlapping of grid lines is again prevented as

to move tan-

dimensional case,
n line can be made

Points lying along a constant

for all these

(n. .)_ to be zero
1,3 1
for constant & lines.

gential to this line by specifying

A similar procedure can be adopted
etc.

points.
litates the movement of points along surface boundaries,

This faci
of points

this type of unnatural constraint on the velocity
A more

¢

However,
leads to a slightly distorted grid as shown in Figure 2.
1 to boundaries is to

natural way of making points move tangentia
use the pseudo points outside the

specify periodic boundaries and
1so to calculate the grid speed. This procedure

region of interest a
ating the grid speed results in the grid shown in Figure 3.

of calcul
2 are absent in Figure 3 and the

The distortions present in Figure

grid is seen to be smooth and uniform. The grids shown in Figures 2
and 3 were generated using a known solution to the two-dimensional

transient, linear, viscous Burger's equatiom.
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RESULTS

The first problem solved using the present grid generation

technique was the one-dimensional unsteady viscous Burger's equation

g touu s (8)

u(0,x) = (9)

and the boundary conditions

u(t,?) =1
(10)
u(t,l) =9
This problem has the steady state solution
_ Re
u = U tanh [— (1) (11)
2
where )
ORIGINAL PL T TS
OF POOR sy
Re = 1/u (12)
and u 1is the solution of the equation
u-1 -
— = exp {-uRe} (13)
u+l

The slope of the steady state solution at the right end increases and

that at the left end tends to zero as Re increases.

I
i

¢



" McCormack's method was used to integrate Equation (8) and three

i
| .
: point central differences were used to calculate the metrics of the

transformation. The stability limit for McCormack's method for this

problem was determined using the empirical formula given by Tannehill

et al. (9).

' Results are presented for various values of Re in Figures 4-8.

In all cases the steady state results using an adaptive grid and those

obtained using an equispaced grid are compared with the exact solution.

= ] are shown. The errors are very

In Figure 4 results for Re
in both cases but the peak error without an adaptive

small ( < 0.04%)
In

grid is about 1.82 times the peak error with an adaptive grid.
Figure 5 results are presented for Re = 2. The ratio of the peak
errors is now about 4.90 and a significant improvement in accuracy is

However, in Figure 5, the adaptive grid shows a slightly larger

4

seemn.
error in the region 0 < x <0.2. This is due to the fact that the

second point in the grid has moved to the right a substantial distance

resulting in a higher error in this region.
= 3. The second point in this

Figure 6 presents results for Re

case moves so far to the right that the truncation error in calculating

the transformation metrics in this region swamps the entire solution

resulting in a solution that is worse than the one obtained using an

equispaced grid. In order to prevent extreme stretching of the grid
it is necessary to include a measure of the truncation error intro-
duced in calculating the transformation metrics into the driving

force g,

u
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g = fxgl - lxglav + 0 {!ugj - }ugfav} (14)

where 6 1is a constant. Since xg is greater than zero and ug is

less than zero in this problem, Equation (14) can be written as
g = Xe - (Xg)av - 0 {ug - (ug)av} (15)

Since the grid converges when g 1is a constant over the entire region,

the transformation for the converged grid can be shown to be
E = 1 - fy - (1-£) (1-x) 0<f <1 (16)

witere f 1is a constant. Hence, an equivalent way of preventing ex-~

treme stretching is to define u as

u = fu + (I-£f)(1-x)
and the driving force g as

(18)

o= 5l - I5l,,

The error curve obtained for Re = 3 and f = 0.7 is also shown in
Figure 6. A substantial decrease in error is seen, the ratio of the
peak errors being about 3.80. Figures 7 and 8 present results for

Re =5 and Re = 10 respectively. 1In both cases 3z smoothed form of
the solution as given by Equation (17) is used. The ratio of peak
errors is about 2.23 for Re = 5 and 2.13 for Re = 10. Figure 9

shows the transformation obtained for the case Re = 3, f=20.7.

The uniform nature of the transformation is apparent.

ﬂ



ror at a point (e) is

A better measure of the total truncation er
(19)

2
u

a dx
XXX
(20)

e
which can be approximated in this case as

dx2 u
b'e
(21)

which yields

e o
ug/iX
Equation (21) suggests a driving force of the form
= - 2
g =lug /g, | - lug/gl,, (22)
Results of using such a driving force for the case Re = 3 are pre-
The errors obtained are comparable to the ones

sented in Figure 10.
f. However, the advantage in using this

inating the empiricism

(

obtained using an optimal
new form of the driving force lies in elim

gimilar results were obtained
Excessive stretching was once again observed for

required in determining the optimal f.
jindicating the inaccuracy in estimating the
preceding

for all Re < 5.0.
the accuracy with

higher values of Re,
error. The analysis and results presented in this and the
paragraph show that the method is limited only by

t a poimnt can be estimated.
olved was the two-dimensional unsteady,

which the total truncation error a

The second problem s
linearized, viscous Burger's equation
)

+ u = pfu + u
y Mt vy

(23)
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in a square domain with the initial conditions

1 - exp(Re(x-1))

u(x,0,0) =1 +
(I - exp(-Re))
(24)
1 - exp(Re(y-1))
u{0,y,0) = 1 +
(1 - exp(-Re))
u =1 otherwise
where
Re = 1/u (25)

and the boundary conditions

1- exp(Re(x-1))

u(x,0,t) = 1 +
(1 - exp(~Re))
1 - exp(Re(y-1)) é;;§
u(0,y,t) = 1 + (26)
(1 - exp(-Re))
u(x,1,t) = 1
u(l,y,t) =1
This problem has the steady state solution
(1 - exp(Re(x-1))) (1 - exp (Re (y-1))) (27)
u=1+ 5
’ (1 - exp(-Re))
McCormack's method was used to integrate Equation (23) and three
point central differences were used to calculate the metrics of the
transformation., To prevent excessive stretching of the grid a smoothed
version of the solution () o
N/
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(28)

T = fu 4+ (1-f) (4-x%-y)/2
=5 and f = 0.3.

is used to calculate the driving force.

Figure 11 shows the grid obtained for Re
calculated at the points shown in Figure 11 and a linear
respon-

The error is
interpolation is used to calculate the error at the points cor
ding to the equispaced grid. The results are presented in Figures 12-
The adaptive grid yields slightly higher
ure 12 and gradually pro-

station.

15, at each ¥y
errors in the low gradient region as in Fig
high gradient regions as in

sresses to much lower errors in the
ccuracy are not as high as in the one-

The increases in a
main reason being the inaccuracy in establishing

Figure 15.
dimensional case, the
One complication that exists only in two-
rivative

the local truncation error.
three-dimensional problems is the appearance of cross de
The absence of

and
terms in any estimate of the local truncation error.
x = 0.8, y =0.2 in

cross derivative terms in the present formula

This point has a large value of
direction.

Figure 12.

resulting in mesh clustering only in the X

are by no means small and hence due to
Future work

u
y
the terms u and u
Xyy XXY
in this region give rise to large errors.

large Ay
with two-dimensional problems will requir
e generaticn of grids.

derivative terms be included in th

¢

tion of the grid genera-

and a small value of

tion scheme is felt particularly at the point
u
X
However,

e that the influence of cross
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TIME REQUIREMENTS = =

The number of integration steps required for convergence is always
greater with an adaptive grid because of the lower values of maximum
allowable time steps associated with mesh clustering. The ratio of the
number of steps required with and without an adaptive grid goes all the
way from 3.4 for Re = 10 to 1.4 for Re =1 in the one-dimen-
sional case and takes on a value of 2.3 in the two-dimensional case.
However, time estimates will be given only on a per integration step
basis. In the one~dimensional case the generation of the grid and re-
calculation of the transformation metrics takes less than 10% of the
time taken for integration. 1In the two~-dimensional case, the genera-
tion of the grid takes 25% and recalculation of metrics takes 70%
of the time taken for integration. One of the reasons for the
excessive time taken for the calculation of metrics is the presence <
of second derivatives like € > & ,n_, and N..» all of which need

XX© Tyy© xx Yy

to be determined numerically. The absence of these second derivatives
greatly speeds up the calculation of metrics. Furthermore, if the
problem requires the recalculation of metrics even without an adaptive
grid, as in shock fitting programs, the time required to use an adap-
tive grid becomes vVery attractive. It must also be remembered that
the percent extra time in this case isg high because the equation being
solved is very simple. Since the time for grid generation remains
about the same in far more complicated problems, the Present extra

time for grid generation will be much less for such problems.



c

™

In conclusion, the major contributions of this paper are:

(a) Formulation of simple first order partial differential
equations for the grid point velocity in transient proﬁleﬁs.

(b) Significant error reductions for solutions of Burger's
equation in one and two dimensions.

(¢) The use of local flow information and boundary motion in

determining the interior grid point motion.
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A Two Dimensional Mesh Verification Algorithm

R. Bruce Simpson
Department of Computer Science
University of Waterloo
Waterloo, Ontario, Canada.

Abstract

A finite element mesh is commonly represented in a program by

1ists of data, i.e., vertex coordinates, element incidences, boundary data.

In general, these lists describe a collection of triangles. Whether the

triangles form proper mesh for a region or not, i.e. whether they 'tile’

a region, is data dependent in a non obvious way. This paper specifies
a set of ccnditions on the iriangles (i.e. on the list data) which ensure
that the triangles tile a region and which also can be verified by an

algorithm which is referred to in the title and which is claimed to be

of reasonable efficiency.
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Vertex Coordinates Element incidences Boundary References
Index X~y coordinates index vertex indices index references
1 2.00  1.00 1 1 2 3 1 13
2 2.00  2:00 2 2 4 3 2 2 2
3 1.00  1.00 3 2 5 4 3 31
4 1.00  2.00 4__ 5 6 4 4 4 2 indicates :
5 2.00 3.—00«”"‘ 6 5 6 1 boundary
6 1.00 3.00 —~T 8 6 6 6 2 edge starte
L 2.00 4.00?%-—"*’%’/9 10 1 7 7 3 at —3
8 1.00 400 "y ¥ & 10 2 1 8 8 1 —=—%
9 3.00 1,00 T\/ #3 1112 5 9 9 3
10 3.00 2.00 A /10 1% 10 1
11 3.00  3.00 111 1397 o9 11 Iy
12 3.00  4.00 ’ [ 12 14 1o o ¥~ 12 3k
13 4.00 1.00 I 13 14 15 10 137713 1 &
14 4.00  2.00 bolag 35 11 10 14 14 2 )
15 4.00  3.00 Pl 1s 15 16 11 15 15 1§ .
16 4.00 4,00 Lo 16 16 12 11 16 16 1 I N
4 M
! ' /
o // /
r g )1
{ /
Y | ® @ % i
| a
6 Yo 16 a
v / /
5 9 15 /
©; @ r !
f'._-
ST A o
4' / /
3 13 /
@‘\, &;D @J @ / /
/ /
2 3 2 VY
/ /
\ 4 L VO
<= "/ ot /
® O G.. G,
TR o
N
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Basic List Representation of a Mesh

The mesh verification algorithm assumes that the collection

of triangles is described by three lists as shown in the following

small example.




( |1

¢

CONDITIONS

C1 The TRIANGLE VERTICES ARE SPECIFIED IN COUNTER CLOCKWISE ORDER

VG e

Va V@, K

€2 LITHeR THE 1TH EDGE OF E (K) 1S THE ONLY EDGE JOINING ITS
END POINTS (ROUNDARY ELEMENT)
OR THERE 1S EXACTLY ONE ELEMENT, E (2) HAVING THE SAME
EDGE, IN THIS LATTER CASE, THE DIRECTIONS OF THIS
LINE SEGMENT As EDGES OF E () anp E (#) MusT BE

DIFFERENT,

E(K)\

C3) No BOUNDARY EDGE INTERSECTS MDRE THAN ONE ELEMENT, EXCEPT

AT ITS END POINTS.

CL4) A VERTEX CAN HAVE AT MDST ONE BOUNDARY EDGE DIRECTED AVIAY

FROM IT.
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IMPLICATIONS
1) MesH BOUNDARY EDGES FORM A SET OF DISJOINT, ORIENTED, SIMPLE CLOSED
CURVES
Cl; CZ) L ] C

K = MESH BOUNDARY CURVES

2) EACH CURVE OF BOUNDED INTERIOR DEFINES A CONNECTED REGION, THE

BOUNDARY OF THIS REGION IS COMPOSED OF MESH BOUNDARY CURVES

v X
N
(Assue 1 CURVE OF BOUNDED INTERIOR - Cl)
Derine R = ﬁ] (INTERIOR OF ;2
=1 (CONNECTIVITY K)
N
2R = \5 E )
&1

W Ir P€R, P IS NOT AN ELEMENT EDGE

"—‘> P LIES IN EXACTLY ONE ELEMENT,

i

i

(

C
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Small Example Invalid Mesh on Hollow Square

Section of Mesh Verification Algorithm Detailed Error Report

MESH VERIFICATION ERROR

@

16

=)

D 14

/3

12

3

Coordinates of vertex 13 changed to (2.5, 2.5)

INTERSECTING BOUNDARY EDGES -

EDGE FROM VERTEX 13 AT
EDGE FROM VERTEX

MESH VERIFICATION ERROR

{ 2.50,

2 AT ( 2.00,

INTERSECTING BOUNDARY EDGES -

EDGE FROM VERTEX 14 AT
EDGE FROM VERTEX 10 AT

FROM BDSCAN, NO.

MESH VERIFICATION ERROR

ELEMENT

MESH CHECK ENCOUNTERED

( 4.00,
( 3.00,

2.50)
2.00)

2.00)
2.00)

OF BOUNDARY CURVES=

TO VERTEX 9 AT
TO VERTEX 10 AT

TO VERTEX 13 AT
TO VERTEX 11 AT

2

{ 2.50,
( 3.00,

11 APPEARS TO HAVE VERTICES LISTED IN WRONG ORDER
1.000000E 0O
2.500000E 00
2.000000E 00

X= 3.000000E QO Y=
X= 2.500000E 0O Y=
X= 4,000000E QO Y=
DET = -2.000000E 0O

3 ERRORS

2.50)
3.00)
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GENERATION OF C-TYPE CASCADE GRIDS
FOR VISCOUS FLOW COMPUTATION
Peter M. Sockol

NASA Lewis Research Center
Cleveland, Ohio

ABSTRACT

o This paper presents a rapid procedure for generating C-type cascade grids
— suitable for viscous flow computations in turbomachinery blade rows. The

resulting mesh is periodic from one blade passage to the next, nearly

orthogonal, and continuous across the wake downstream of a blade. The
B procedure employs a pair of conformal mappings that take the exterior of the
e’ cascade into the interior of an infinite strip with curved boundaries. The
final transformation to a rectangular computational domain is accomplishea
numerically. The boundary values are obtained from a panel solution of an
intégral equation and the interior values by a rapid ADI solution of Laplace's
equation. Examples of C-type grids are presented for both compressor and

turbine blades and the extension of the procedure to three dimensions 1s

briefly outlined.

(
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Most of the coordinate systems in current use for turbomachinery flow
computations are of one of three types. The channel grid has one family of
lines starting upstream, passing through the blade rows, and continuing on
downstream. The O-type grid has one family of lines that form closed loops
around the blades. Finally, the C-type grid has one family of lines that wrap
around the blade leading edge and continue on downstream. While the channel
grid can be aligned with the flow and is fairly easy to generate, the
resolution around the leading edge is usually poor and a choice usually has to
be made between periodicity or near orthogonality for highly staggerea
Cascades. Although the O-type grid provides excellent resolution arourd
leading and trailing edges and may be both periodic and orthogonal, in general
there is no mesh line aligned with the downstream flow and, hence, it is
unsuitable for viscous computation. The C-type grid, on the other handg,
appears to be a good choice for viscous flows. It provides good leading edge
resolution, it can be both periodic and orthogonal, and it can be aligned with
the downstream flow. This baper presents a rapid procedure for generating

such C-type grids.

g
bl

CHARNEL GRID

hY
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The procedure starts with a conformal mapping which takes the exterior of a
-plane into the interior of the
Upstream infinity maps to the origin and
This mapping is a limiting form
When

cascade of semi-infinite flat plates in the 2

unit circle in the W-plane.
of finite-chord flat plates (1).
such as the turbine cascade in the

downstream infinity to +1 on the real axis.

of the standard mapping for a cascade
this mapping is applied to a real geometry,

figure, the semi-infinite flat plate is taken to run ifrom a peint Zl

inside the leading edge through the downstream end of the wake.
CONTOUR IN CASCADE PLANE

2, + A[e"H(log W - i) - 2 cos y log(l - W]
Z; + ZAE{ sin y + cos v log(2 cos Y)]

Z =
S iy -
T e’ , 25 =

A=

(
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The mapping of the turbine cascade and wakes of the preceding figure produces S

the highly distorted "circle" in the adjacent figure. Note that the contour
actually crosses the real axis twice between zero and one. The next mapping
takes the interior of the unit circle in the W plane, with a branch cut from
zero to one along the real axis, to the interior of the infinite strip between
the real axis and (-i g ) in the ¢ -plane. The upper and lower sides of
the wake at downstream infinity are mapped to plus and minus infinity,

respectively, while upstream infinity maps to the origin, Since W is a

function of C2 r reflection of 7 through the origin leaves W unchanged.

CONTOUR IN W PLANE

i
i

(

W = t:anh2 % =

(
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 -plane is a

The image of the cascade of turbine blades and wakes in the
pair of parallel straight lines cunnected by a roughly S-shaped curve. 1In

actual practice W is eliminated between the two functions and the transfor-
is obtained by Newton iteration proceeding from point to

mation from Z to

point around the contour. TO insure that the branch cuts of the logarithms
are never crossed, the imaginary parts of these logarithms are saved.
Whenever the change in either of these quantities between adjacent points

7 , the computed value of the logarithm at the new point is

exceeds %
incremented by t2 m i, i.e. in the opposite direction.

CONTOUR IN ¢ PLANE

(
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The final mapping transforms the infinite strip in the ¢ -plane, bounded o/

by the blade-wake contour and its reflection through the origin, into a
rectangular domain with coordinates F = € + 1in. If welet F be the

complex potential for flow through the strip and require F(Z ) = -F(-

together with n =

integral. Here C,B, and h are, respectively, the complex velocity, flow
angle, and normal channel width in the far fiela.
formation of an integral equation for the unknown vortex density q. The
source density qn is set to cancel the normal component of the velocity

C. Here s is distance along contour.

panels and locally constant 9 and q, is used to solve for

then to find &

442

as a function of ¢

along the contour.

FORMATION OF INTEGRAL EQUATION
COMPLEX POTENTIAL

F{z) = 2—,1“— / $(t) log :—j—z at + cg

WITH F=t+in, c=2e

SET se13E = g, - iq,
WITH ape = 1n [e g8

ON CONTOUR  n = -1 AND

. : +z
%f [qtReglog:tgz"qn im gloqt_z{lds

=1+ Im(Cz}

-1 along the contour, then we can write F as a contour

The figure shows the

A simple panel method, with flat

qt and

it
(hm
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\ Generation of the grid in the rectangular & , n

./ Space proceeds in two

stages. First points are located on the boundaries such that the grid in the

cascade plane is periodic and continuous across the wake. Periodicity is
enforced by distributing points symmetrically about the origin alorg the

-axis. Continuity across the wake, away from the trailing edge, is

g

achieved by selecting a constant mesh size A& for this region such that the

spacing in the cascade plane is an integer fraction of the staggered distance
s sin !Bwi , where s 1is the blade pitch and 8, is the wake angle. The

values of ¢ along the boundary are then found by inverse interpolation in

In order to enforce continuity near the

the solution of & vs C
trailing edge, a local straining is first introduced that places a point
directly at the trailing edge. Then pairs of neighboring points across the
wake are adjusted until their images in the cascade plane coincide. The

1 at the two ends of the region is arbitrary.

distribution of points with
Uniform spacing can be used for inviscid flows, and boundary layer stretching
can be used to cluster points near the blade surface and wake for viscous

flows. Once the boundary values of ¢ are specified, interior values are

found by solving the complex Laplace equation by a cyclic ADI relaxation
scheme which has the symmetry properties of built in. Estimates of the
maximum and minimum eigenvalues of the matrix are used to obtain near optimum

values of the acceleration parameters (2). Convergence to the round-off error
limit with seven place arithmetic is typically obtained in six to twelve

iterations, even for cases where the maximum and minimum eigenvalues differ by

five orders of magnitude.
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GRID GENERATION

BOUNDARY VALUES IN (¢, n ) SPACE

¢ VALUES SYMMETRIC ABOUT ORIGIN
6g  CONSTANT ALONG WAKE WITH

|az] = (s sin ]Bwf)/integer

LOCAL STRAINING NEAR TRAILING EDGE
' E-E&p &= E,)2
€=E+6t[gt_€l-gt_€2]

fe— 22 —3}

I
%t

E; T T T T T YT YT T g ‘lllE e VTV YT T TTT 7777777
1 t t

ARBITRARY DISTRIBUTION ALONG n

INTERIOR VALUES IN (¢ , n ) SPACE

3£%  an2

SOLVED BY CYCLIC ADI RELAXATION
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Note that the

z -plane.

This figure shows the grid distribution in the
upper boundary in the plot, which is found by the symmetric ADI solution of

Laplace's equation, maps into the upper and lower periodic lines in the

cascade plane,
GRID IN z PLANE

¢

.1, PAIE 13
OR}V.GTJ\I, ".‘:J P p s o
. CUAT SV

orf YOV
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The final grid in the cascade plane is obtained by conformal mapping of the
solution in the T -plane using the two analytic functions previously
introduced. This figure shows the grid distribution for the cascade of
turbine blades. Note that the continuity across the wake was obtained at the
expense of a small amount of nonorthogonality. The rounded cap at the
upstream boundary was obtained by extrapolation from the next two inner loops.
Generation of this grid (99 x 7 points) required about 1.4 sec. of CPU time on

an IBM 3033 computer.

GRID IN CASCADE PLANE
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The last figure presents C grids for a compressor stator and a turbine rotor.
The stator was designed to turn the flow to the axial direction, hence, there
is zero stagger in the downstream boundary. The turbine rotor is a
particularly difficult case as it was designed to produce 126 degrees of
turning. In this case the imposition of continuity across the wake resulted
in a significant change in slope.

The extension of this procedure to the generation of three-dimensional
turbomachinery grids should be relatively straightforward. First the spanwise
direction is discretized by a number of coaxial, axisymmetric surfaces. Next,
and most difficult, the intersection of the blade with each of these surfaces
is obtained in meridional ( m ) and tangential ( 6 ) coordinates. Since the
geometry is periodic in & , these (m , 6 ) coordinates can be fed into the
current program to generate a C-grid on each of the axi-symmetric surfaces.

For O-grids this has already been done by Dulikravich (3).
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NUMERICAL GENERATION OF TWO-DIMENSIONAL GRIDS BY
THE USE OF POISSON EQUATIONS WITH GRID CONTROL
AT BOUNDARIES

Reese L. Sorenson
NASA Ames Research Center, Moffett Field, CA 94035

and

Joseph L. Steger*
Flow Simulations, Inc., Sunnyvale, CA 94086

Abstract

A new method for generating boundary-fitted, curvilinear, two-dimensional
grids by the use of the Poisson equations is presented. Grids of C-type
and O-type have been made about airfoils and other shapes, with circular,
rectangular, cascade-type, and other outer boundary shapes. Both viscous
and inviscid spacings have been used. In all cases two important types
of grid control can be exercised at both inner and outer boundaries.
First is arbitrary control of the distances between the boundaries and
the adjacent lines of the same coordinate family, i.e., "stand-off" dis-
tances. Second is arbitrary control of the angles with which lines of
the opposite coordinate family intersect the boundaries. Thus, both grid
cell size (or aspect ratio) and grid cell skewness are controiled at
boundaries. Reasonable cell size and shape are ensured even in cases
wherein extreme boundary shapes would tend to cause skewness or poorly
controlled grid spacing. An inherent feature of the Poisson equations

is that lines in the interior of the grid smoothly connect the boundary
points (the grid mapping functions are second-order differentiable).

A user-oriented, well documented, FORTRAN computer program, called GRAPE,
has been written to employ this grid gengration method. It is available

from the Applied Computational Aerodynamics Branch at NASA-Ames Research
Center.

*Now with Stanford University.
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DESIRED PROPERTIES OF A GRID GENERATOR

® ARBITRARY BOUNDARY SHAPES
e ARBITRARY POINT DISTRIBUTION ON BOUNDARIES
¢ SMOOTH VARIATION (DIFFERENTIABILITY) IN INTERIOR
® COMPUTATIONALLY FAST
® EASY TO USE
® CONTROL OF ANGLES ® CONTROL OF SPACING
AT BOUNDARIES NEAR BOUNDARIES

“ i
il i

The principal contribution of this work
is that the angles and spacing at the
boundaries are input. Thus, one need
not try to implement pre-determined
angles and spacing by trial-and-error
tuning of other parameters.

|
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TOPOLOGY OF GRID MAPPINGS

7= MTmax

& T7] £ = Emax
a n=0 b
7Y, 7777

. COMPUTATIONAL SPACE
PHYSICAL SPACE

O-TYPE GRIDS
d e f g
g9 n
7= Tmax
&E _éﬁ £= Emax
c ' : P 4 =
b £=%tma
¥ n=0 . ° =0 X
- £E=0 n=0
n=n
x / max d L — -
b c b a
PHYSICAL SPACE COMPUTATIONAL SPACE
C-TYPE GRIDS

Topology and notation for 0-type and
C-type grids are shown here. The
independent variables in the physical
space are x and y, while £ and n are the
independent variables in the cartesian
computational space.
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POISSON EQUATIONS

Mxx ¥ yy = QE, 1)

OR, WITH DEPENDENT AND INDEPENDENT VARIABLES INTERCHANGED:
OD(EE - Zﬁx{:n + "/Xnn = —J2 (PXE + an)
Vg = 2 + 1Yy = ~I2 (Pyg + Qyy)

. =x 2 2
WHERE: a=x, Sy,

B=xexn * vy o
v= xsz + ysz

I= Xy - %,¥e

Basic to the method is that the grid transformations
€= &(x,¥), n=n(x,y) must satisfy the Poisson
equations. The equations are solved with dependent
and independent variables interchanged to facilitate
numerical integration and the application of boundary
conditions. The equations with variables thusly
interchanged are sometimes referred to as the "trans-
formed" Poisson equations.
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_ CHOICE OF INHOMOGENEOUS TERMS

(WH

P(¢, ) = pl£)e™@T + r(£) G m—)

Q(S: 7?) = CI(E) e_bn + S(E) e_d(nmax'n)

Inhomogeneous, or right-hand-side, or P and Q terms 1in
the Poisson equations determine the character of the
grid. Different choices for P and Q produce different
grids. In this method P and Q are chosen as shown here
with a,b,c, and d positive Note that the inner (n = 0)
boundary P(£,n) reduces to p(g), and that at the outer
(n = nmax) boundary P(£,n) becomes r(g), and similarly
for Q(£,n). The approach is to assume that the geo-
metric input requirements (control of angles and spac-
ing at boundaries) are satisfied along with the Poisson
equations at the boundaries, then back-solve for p(g),
a(e), r(g), and s(£). Then P(g,n) and Q(g,n) can be
calculated for every point in the field.
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ITERATIVE UPDATE OF INHOMOGENEOUS TERMS

GIVEN TWO GEOMETRIC REQUIREMENTS: TWO ADDITIONAL EQUATIONS:
® CONTROL 4() - VEUn=1VEL IVnlcoss
® CONTROL Asit) s = [(ax)2 + (ay)2) %

1

DESIRED VALUES FOR Xpe ¥
AT BOUNDARIES

NEW VALUES FOR p(¢), q()

Xone Yan AT BOUNDARIES FROM
NEW x, y

NEW VALUES FOR P(¢, 1), Ql¢, 1)

\. NEW VALUES FOR x, y

For each boundary (inner and outer) the two geometric contro]
requirements can be re-cast as the two additional equations

shown on the upper right. These two equations can be solved for
the two derivatives xn and yn. Derivatives xg, yg, ng’ and ygg

can be found by differencing known, fixed boundary data. Deriva-

t1ves-xgn and ygn are found by differencing the xn and yn, Just

found, with respect to £. Thus, to back-soTve the transformed
Poisson equations for p(g) and q(&), two derivatives remain to be
found: x__and y .
nn nn
In the solution procedure, each iteration step is in two parts.
First, the x and y from the previous iteration (or initial condi-
tions) are differenced to find xnn and ynn at the boundaries. These

are combined with all the other derivatives discussed above, which
are fixed for all iteration levels, to form the transformed Poisson
equations at the boundary. These are back-solved for new values of
p(e) and q(e). Terms r(¢) and s(z) are similarly found. New
values for P(z,n) and Q(e,n) can then be calculated. The second
part of each solution step is to perform one iteration of some
solution procedure, such as SLOR. The above is iterated to
convergence, producing a grid that satisfies the given geometric
requirements. Inhomogeneous terms which yield the desired grid
control are thus found automatically as the solution proceeds.

ul
"
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COARSE-FINE SEQUENCING SOLUTION PROCEDURE
FROM COARSE SOLUTION

&

DEFINE INTITIAL
CONDITIONS
INTERPOLATE TO FIND
AT S INITIAL CONDITIONS FOR
COARSE GRID SOLUTION PROCESS | FINE SOLUTION
(e | =]
FROM PREVIOUS —
| ITERATION, BOUNDARIES, } FINE GRID SOLUTION
AND GIVEN 0, 4§ PROCESS (IDENTICAL TO l
| | [RECOMPUTE it n) AND Qik. || 4 | = COARSE SOLUTION |
| ] | | PROCESS) |
| ONE SLOR ITERATION l |
l STEP FOR x, vy ‘ ll ,_———.1 I
} l ‘ NEW P AND Q |
| ] ' |
| NO YES J | NEW x AND y |
| | { |
I t | |
l. __________ —_ | :
S S
e RESULTS IN SPEEDUP (OVER NORMAL SLOR)
BY FACTOR OF 15.
The
rec-
This

(

Numerical convergence is greatly accelerated by an
coarse-fine sequencing.
solution is first iterated to convergence On a co0arse

additional feature:
grid consisting of every third point in the ¢ di
tion and every third point in the n direction.
convergence requires relatively little computer time
since the amount of arithmetic being done per step
is one-ninth that which would otherwise be done.
The coarse solution is then interpolated to provide
initial conditions for a fine solution using all of
Coarse-fine sequencing produces a speed-
Grids

up over normal SLOR by a factor of up to 15.

the points.

have been generated, for simple cases, in as Tittle

as two-thirds of a second of CPU time per thousand
grid points on a CDC 7600 computer, including “"set-up"

overhead.
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GRIDS ABOUT HIGHLY CAMBERED ELLIPSE

GENERATED BY
LAPLACE N
EQUATION, %
SHOWING POOR \\
CONTROL OF CELL
SIZE AND \
SKEWNESS

GENERATED BY
POISSON
EQUATION
WITH CONTROL
AT BOUNDARIES

The effectiveness of the grid control is demonstrated in
this comparison of two grids about a highly cambered 12:1
elliptical airfoil. In the two top figures is seen a grid
generated by the Laplace equations--like the Poisson equa-
tions but with P = Q = 0. Uncontrolled cell size and skew-
ness are clearly seen. The figures on the bottom were
generated by the present method with the grid control at
the boundaries. It was required that the Tines intersect
the airfoil at 90° and that the standoff distance be 0.005
chord lengths at all points on the airfoil surface. The
angle requirement was satisfied to a tolerance of + 0.1°
and the distance to a tolerance of + 0.00001 chord lengths,

il
il

m |
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NEARLY SQUARE GRID CELLS ALONG SURFACE IN LEADING
EDGE REGION OF NACA 0012 AIRFOIL

ALONG SURFACE

\ ){
GRID SPACING NORMAL TO SURFACE (As) SPECIFIED AS
EQUAL TO LOCAL VALUE OF ARC-LENGTH

An interesting capability of this method is seen in this

close-up view of the leading edge region of a grid about

an NACA 0012 airfoil. The angle requirement need not be

90° and it need not be equal at all points on the airfoil

surface. Likewise, the standoff spacing need not be con-

stant. In this grid the angle requirement was chosen as

90° everywhere on the airfoil, but the standoff spacing

requirement (normal to the airfoil surface) was taken to
be equal to the Tocal value of the arc-length along the

This produces grid cells along the surface that
are nearly square, despite greatly varying surface dis-

surface.
tribution.
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C-TYPE GRID FOR MODELING WIND TUNNEL WALLS
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GRID SPACING AND ANGLES CONTROLLED AT
OUTER BOUNDARY

A C-type grid for modeling flow through
a wind tunnel is seen here. Grid spac-
ing and angles are controlled at the
outer boundary.
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UPSTREAM REGION IN O-TYPE CASCADE GRID

CONTROL OF SPACING AND

ANGLES AT OUTER BOUNDARY
ENSURES SMOOTH TRANSITION
BETWEEN CASCADE ELEMENTS

O 3 N

\ \ WK RN
AMHlhiw AT HTHW
N \
MANN

Z
=

7
7y

2

7

Z A
=27

///

=

o

Thus, the application of periodic bound-
ary conditions between cascade elements
This same capability ensures smooth ver-
tical transition across the branch-cut
in the wake region of a C-type grid.

each cascade element do so vertically.
is facilitated.

Control of spacing and angles at outer
boundary is applied here to a cascade.
It was specified that the lines of con-
stant n which intersect the top and
bottom parts of the outer boundary of
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GRID USED IN STUDY OF BLAST WAVE ENCOUNTERING o
STATIONARY PICKUP TRUCK '

The versatility of the method is illustrated here.
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FEATURES OF GRAPE (GRIDS ABOUT AIRFOILS USING
POISSON’S EQUATION), A USER-ORIENTED
FORTRAN COMPUTER PROGRAM

e 6, As ARE INPUT

e CODING IS MODULAR, GENEROUSLY COMMENTED, SYNTACTICALLY
CONSERVATIVE

e BUILT-IN DEFAULT CASE, AND SIMPLE, WELL THOUGHT-OUT INPUT WHICH
IS CHECKED BEFORE USE

e VERSATILE: C-TYPE OR O-TYPE, FREE-STREAM OR WIND TUNNEL OR
CASCADE, VISCOUS OR INVISCID

e GRAPHICAL OUTPUT

< ® FAST

e WELL DOCUMENTED AND ACTIVELY SUPPORTED

A user-oriented, well documented, FORTRAN computer
program, called GRAPE, has been written to employ
this grid generation method. It is available from
the Applied Computational Aerodynamics Branch at
NASA-Ames Research Center.

C’HW
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TN81-14723

<
USE OF HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS
TO GENERATE BODY FITTED COORDINATES
Joseph L. Steger*
— Flow Simulations, Inc., Sunnyvale, CA 94086
and
Reese L. Sorenson
Moffett Field, CA 94035

NASA Ames Research Center,

Abstract

'y

Interpreting previous work, hyperbolic grid
generation procedures are formulated in the style

of the elliptic partial differential equation
For

schemes used to form body fitted meshes.

problems in which the outer boundary is not
consfrained, the hyperbolic scheme can be used
to efficiently generate smoothly varying grids
with good step size control near the body.
Although only two dimensional applications are

presented, the basic concepts are shown to

extend to three dimensions.

.
‘Now with Stanford University.
463
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The task of generating the exterior mesh about
an arbitrary closed body as indicated in this slide
is undertaken. The location of the outer boundary
is not specified; it only need be far removed from
the inner boundary. Such a grid generation problem
is encountered in external flow aerodynamics.

We seek a grid composed of constant £ and n
lines as indicated in this slide, given initial X,y
data along £ atn = 0. The grid generation
equations, just as the flow field equations, are

solved in the uniform transform plane.

SKETCH OF PHYSICAL AND COMPUTATIONAL PLANE

nmax

n=0

'

cﬁ

c



(m”‘ ‘

e

Partial differential equations are sought to
generate a smoothly varying mesh such that grid lines
of the same family do not interect or coalesce. Two
systems of nonlinear hyperbolic partial differential
equations have been considered for the given initial

data sketched in the previous slide. As indicated

in this slide, these systems each use the condition of

orthogonality and a geometric constraint.

HYPERBOLIC GRID GENERATION EQUATIONS

ARC LENGTH-ORTHOGONALITY SCHEME
x% + y? + xf) + y% = (As)2
xExn + yEy'fl =0
VOLUME-ORTHOGONALITY SCHEME
XYy~ Xn¥g =V

+ =
XgXn " VeV 0

IN BOTH CASES At = An=1
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The previously described nonlinear partial
differential equations must be shown to be properly
posed for the given initial value data. As a first
step, the equations are cast in a locally linearized
form so that they can be analysed as a system of two
first order partial differential equations. For the
locally linearized form to be meaningful, the equations

are expanded about a nearby known solution or state.

LOCALLY LINEARIZED FORM

XgXp T V¥ =0

XeYn = Xp¥g =V

EXPAND x AND y ABOUT KNOW STATE X, Y
E.G. XY, = (x + x—x)g (y + y--y),7 .
=Xy (X X )Y +(y -V )% +0(A
XY, (XE xs)yn (y,7 zyn)xs (AF)
~YnXg T XgVn = XYy, +0(4%)

OBTAIN LOCALLY LINEARIZED FORM

Ny (o 4

o )0 G )65
Yo Xn)\Y)e Ve XJ\Y/, \V+V

(
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Analysis of the locally linearized partial
differential equations indicates that the equations
can be marched in n provided that x% + yz # 0.

That is, the grid spacing in § cannot be of zero

length. The fact that B~'A is a symmetric matrix

ensures that it has real, distinct eigenvalues.
This then means that the system is hyperbolic

if n is used as the marching or time-like

direction.

HYPERBOLICITY
LOCALLY LINEARIZED VOLUME-ORTHOGONALITY EQUATION

T= x), A=<xn j{xn>, B=(XE yz>
Y Y,7 n -y‘E XE

FIND:
a) B~V EXISTS IF x

b) B 1A IS SYMMETRIC

2. 2
+
£ y£¢0

THEREFORE LINEARIZED EQUATIONS ARE HYPERBOLIC
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The grid generatioﬁ equations can be solved
using standard numerical techniques for first order
systems of hyperbolic partial differential equations.
In our case we have used a noniterative implicit
finite difference procedure. 4n unconditionally
stable implicit scheme was selected so that an
arbitrary mesh step size can be specified in the
marching direction. The same kind of numerical

Procedure is used to solve the flow field equations.

NUMERICAL SOLUTION OF VOLUME-ORTHOGONALITY N

EQUATIONS

USES IMPLICIT FINITE DIFFERENCE SCHEME FOR
XeYn —Xpvg =V
XeXn ¥ Ye¥p =0
SCHEME IS : a) UNCONDITIONALLY STABLE
b) NONITERATIVE

c) SECOND ORDER IN £, FIRST ORDER IN n
d) REQUIRES A BLOCK TRIDIAGONAL INVERSION



The volume orthogonality scheme requires that the
user specify the volume (area in 2-D) of each mesh
cell. The quality of the grid will, to a large extent,
be determined by the user's cleverness in specifying
these volumes. To specify these volumes, we currently
define a simple geometric shape (e.g. circle or straight
line) which has exactly the same arc length as the body
we wish to grid. An algebraically clustered grid is
then created by the user for the simple geometric shape.
The volumes of this simple grid, the control volume grid,
are then used directly on a point by point basis in the

hyperbolic grid generation equations.

SELECTION OF VOLUMES

PHYSICAL
GRID

SPECIFIED
CONTROL
VOLUME
GRID

Sb—Sa —a

A
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i

In this case a viscous grid is generated about
the cambered profile. The normal grid spacing at
the body is 0.01% of the chord length. Note that
because volume is specified the grid spacing grows

in the marching direction S0 as to prevent the

- circumferential spacing from vanishing. For a

profile with twice the camber, however, this
Process breaks down and grid lines do coelesce.
In these cases a more sophiticated means of

specifying the volumes is needed.



VISCOUS GRID GENERATED ABOUT HIGHLY
CAMBERED AIRFOIL
GRID DETAIL NEAR BODY

__% i

Y

GRID DETAIL NEAR LEADING EDGE

W
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These views show the hyperbolic grid generation
scheme applied to generating a ''C-grid" about a cambered
airfoil. Here the control volume grid is generated
about a straight line, that is, it is nothing more
than a clustered rectangular grid. It is clear from
the view at the trailing edge that some adjustments
are needed to the current numerical treatment of

discontinuous boundary data.

GENERATION OF C-GRID ABOUT
CAMBERED AIRFOIL
OVERVIEW

T
Lt

(75
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GRID DETAIL NEAR BODY

¢
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- ORISTE AL T
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GRID DETAIL AT TRAILING EDGE
EE———
_
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HYPERBOLIC GRID GENERATION ADVANTAGES

SMOOTHLY VARYING GRID IS FOUND

GOOD USER CONTROL OF CLUSTERING NEAR BOUNDARY
FAST GRID GENERATION

ORTHOGONAL OR NEARLY ORTHOGONAL
AUTOMATICALLY TREATS COMPLEX SHAPES

HYPERBOLIC GRID GENERATION DISADVANTAGES

476

OUTER BOUNDARY CANNOT BE SPECIFIED (UNLESS
ITERATIVE SHOOTING METHOD DEVISED)

SCHEME TENDS TO PROPAGATE DISCONTINUOUS
BOUNDARY DATA

POORLY SPECIFIED BOUNDARY DATA AND CONTROL
VOLUMES CAN RESULT IN “SHOCK-WAVE" LIKE BREAKDOWN

il
il

(



<~ The hyperbolic grid generation scheme can also be
formulated in three dimensions. With volume specified
as one constraint, orthogonality can only be enforced
in two of the coordinate directions. The three partial
- differential equations shown form a hyperbolic system

for marching in z. Proof that the equations are

hyperbolic was quite tedious, required considerable
insight, and was carried out by Dennis Jespersen of

Oregon State University.

EXTENSION TO THREE DIMENSIONS -
VOLUME AND TWO ORTHOGONALITY

oF O _
dt df
o, dF
dn d§
a(x,y,z)
a(¢,n.¢)

SYSTEM IS FOUND TO BE
HYPERBOLIC

(!
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The three constraints of orthogonality do not ~/
form a hyperbolic system of partial differential
equations. Neither are the equations of elliptic
type. In fact, their classification and what if
any type of boundary data makes them unique is

unknown to the authors.

EXTENSION TO THREE DIMENSIONS -
THREE ORTHOGONALITY

N </
dr  dr _ 0
df  df
dr  dr
[} — 0
d¢ dn
dr , dr
. =0
dn df
SYSTEM CANNOT BE MARCHED
AND IS NOT ELLIPTIC
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CURVILINEAR GRIDS FOR SINUOUS RIVER CHANNELS

.Frank B. Tatom, Engineering Analysis, Inc.
William R. Waldrop, Tennessee Valley Authority
S. Ray Smith, Engineering Analysis, Inc.

CENTERLINE INTRODUCTION

In order to effectively analyze the flow in sinuous river channels
a curvilinear grid system must be developed for use in the appropriate hydro-
dynamic code. The CENTERLINE program has been designed to generate a two-
dimensional grid for this purpose.

The Cartesian coordinates of a series of points along the boundaries
of the sinuous channel represent the primary input to CENTERLINE. The program
calculates the location of the river centerline, the distance downstream along
the centerline, and both radius of curvature and channel width, as a function of
such distance downstream. These parameters form the basis for the generation
of the curvilinear grid.

Based on input values for longitudinal and lateral grid spacing,
the corresponding grid system is generated and a file is created containing
the appropriate parameters for use in the associated explicit finite difference
hydrodynamic programs. Because of the option for a nonuniform grid, grid spac-
ing can be concentrated in areas containing the largest flow gradients.

For the case of sinuous channels of constant or nearly constant
width the resulting curvilinear grid is orthogonal. The grid generation
procedure also provides for dividing the overall flow area under consideration
into a series of regions connected along common boundaries. This concept of
multiple regions tends to improve computational efficiency.

For many sinuous channels the assumption of constant width is not
appropriate. In such situations CENTERLINE generates a nonorthogonal grid
which takes into account the nonuniform channel width.

The CENTERLINE program is currently operational and has been used
successfully in conjunction with both two- and three-dimensional incompressible
hydrodynamic programs. To the authors' knowledge, it is the only cwrvilinear
grid program currently coupled with operational incompressible hydrodynamic
programs for computing two- and three-dimensional river flows.
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BASIC CURVILINEAR COORDINATE SYSTEM
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GOVERNING EQUATIONS FOR INCOMPRESSIBLE CURVILINEAR FLOW

CONTINUITY:
1 [ 3 K _
h_h_h {Bx (hyhzu) * 3y (hzhxv) * 9z (hxhyw)] = 0
X'y Z

X-MOMENTUM:
u , u 3u , v 3u , W ou
C[Bt Y B, Bx a3y bl Bz
v Bhy u th u th w th ]
-v (g aw CFas 5y T ¥ Gn, Bz T Rm 7% )
X X'y Xz z'X
_ 1 ] o 3
= - hxhyhZ [§§ (hyhzcxx) 3y (hzhxoyx) 3z (hxh3czx>]
| =
o] ah ah o] 3h a 3h
+ XY X ZX X VY y _ _z2Z z F
hxhy 3y h_.h_ o3z hxhy ax hxhz IxX X
Y-MOMENTUM:
9V u v v 9V w JV
p[—— b o— 2y = ==
3 hx X hy y hz z
- (5g aahz R Bhy) + U (55 o th)]
2Py y vPz 0 hy - 9X h hy 3y
1 9 ) )
= (h.h o_ ) + == (h_h_o + — (h h o
hyhoh, [Bx y 2z Xy 3y ~z X yy) ¥ 3z (PxPyOzy)
. Gyz th N xz’ah _ 00z ahz O vx ahx -
hyhz 9z yhx 9x hyh 3y hyhX 3y y

<
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Z-MOMENTUM :

ow u 9w vV W W ow
p[—~ e+ = 22 Y oW
ot hx X hy y hz Z
S ahx w ahz) by (W th y oh )]
hxh 0z h_h_ 3x hzhy 3y h hZ oz
_ 1 ) ? d
- hxhyhZ [5; ( yhzcxz) * dy (hzhxoyz) * 3z (hxhyozzﬁ
Tzx_ Mg YZih_z_oix_ﬂ’z_fzx_i}i+F
hxhz X hzh dy hzhX 9z hzhy 3z z
ENERGY : -
N
3T u aT v 9T w oT
= t— =+ X £ 4 W o7
ot hx X hy y hz z
a_h_h o_h_h
=h§h[58§(xh Za_;cr)’“a%(yhzx%
Xy'z X y
+ S (azhxhy QI)
3z Hz 3z
L
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COMPUTATION OF METRIC COEFFICIENTS

FUNDAMENTAL CONSIDERATIONS:

APPEAR IN GOVERNING EQUATIONS
ONLY hX REQUIRES COMPUTATION
EVALUATED FOR EACH GRID POINT
DERIVATIVES ALSO REQUIRED

BASIC RELATIONS:

R +y
h:
X RC
h =
y 1
hZ = 1
DERIVATIVES:
X Rc2 dx
Ay o
oy R’Z
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GENERATION OF CURVILINEAR GRIDS

DIGITIZATION OF CHANNEL
BANK COORDINATES

l

LOCATION OF
CHANNEL CENTERLINE

'

RADIUS OF
CURVATURE OF CENTERLINE

l

ORTHOGONAL
CURVILINEAR COORDINATES

C

3

1

NON-UNTFORM
GRID TRANSFORMATION

'

CONSTANT WIDTH
CURVILINEAR GRID

l

VARIABLE
WIDTH TRANSFORMATION

I

NON-ORTHOGONAL
CURVILINEAR COORDINATES

NON-UNIFORM
GRID TRANSFORMATION

'

VARTABLE WIDTH
CURVILINEAR GRID




134

(«m
HH

(WI!

TYPICAL RESERVOIR

IRREGULAR CONTOURS
OF BANKS
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COMPUTATION OF RADIUS OF CURVATURE AND CHANNEL WIDTH

DIGITIZE CARTESIAN COORDINATES OF CHANNEL BANKS

®
) LOCATE GEQOMETRIC CENTERLINE
COMPUTE DISTANCE ALONG CENTERLINE, x

¢
(] COMPUTE RADIUS OF CURVATURE, RC(X)
() COMPUTE CHANNEL WIDTH, b({x)
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VARTABLE WIDTH TRANSFORMATION

BASIC TRANSFORMATION:

¥o(x) =y (x)

y/b

TRANSFORMATION DERIVATIVES:

i
»
5

]
o<
Q.,Q.
xi{i N
N

g yn



NON-UNIFORM GRID SYSTEM

X-Y PLANE

PRIMARY REGION OF INTEREST

Eﬁ N
4
_ |
e —.
X
X-Z PLANE
489
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RELATIONSHIP BETWEEN NON-UNIFORM AND UNIFORM GRIDS

z = z(X)

z (UNIFORM)

v

X (NON-UNIFORM)

i

(:

"
il
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TRANSFORMATION FROM NON-UNIFORM TO UNIFORM GRID

PROCEDURE :
e IDENTIFY "REGIONS OF INTEREST"

» INPUT DESIRED GRID SPACING
o  GENERATE TRANSFORMATION DERIVATIVES

BASIC TRANSFORMATION:

z = z{X)

- (¥) ANALYTICAL TRANSFORMATION
¥y=y FUNCTIONS NOT REQUIRED
2z = 2(2)

TRANSFORMATION DERIVATIVES:

ag . 99 3
X 3z aX

alg _ 3g 3’z , d’g (Bz)’
NE 3r K% * 9x? (BX)

491



492

CURVILINEAR GRID FOR CUMBERLAND RIVER SEGMENT

s ® o ou= S

NEAR TVA GALATIN STEAM PLANT
CONSTANT WIDTH CHANNEL

NON-UNIFORM GRID (x, Yy, & z)

4 CONNECTED REGIONS

USED IN 3-D FLOW COMPUTATIONS

SCALE IN METERS
0 200 400 600 800

ORIGINAL PATZ 15
OF POCR QUALITY

i) |
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o BETWEEN WHEELER AND WILSON DAMS

e VARIABLE WIDTH CHANNEL

UNIFORM GRID (x only)

o NON-

ERAGED FLOW COMPUTATION

e USED IN 2-D DEPTH-AV

_EEU

SCALE IN METERS
3600

1200 2400

0

W
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CURVILINEAR GRID FOR GREEN RIVER SEGMENT

o  NEAR PARADISE STEAM PLANT
o  MODERATE SINUOSITY
¢  VARIABLE WIDTH

® UNIFORM GRID

SCALE IN METERS

300 600
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CURVILINEAR GRID FOR TENNESSEE RIVER, WHEELER RESERVOIR

NEAR REDSTONE ARSENAL

MODERATE SINUOSITY

UNIFORM GRID

VARIABLE WIDTH

hU

SCALE IN METERS
600 1200 1800
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CURVILINEAR GRID FOR LITTLE TENNESSEE RIVER SEGMENT

® PART OF TELLICO LAKE
¢ HIGH SINUOSITY
®  VARIABLE WIDTH

¢ UNIFORM GRID

SCALE IN METERS

p— ;
0 300 600 900
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CURVILINEAR GRID FOR TOMBIGBEE RIVER SEGMENT

e PORTION OF TENNESSEE - TOMBIGBEE WATERWAY

e EXTREME SINUOSITY
¢ VARIABLE WIDTH

o UNIFORM GRID

SCALE IN METERS

900

OWT

300 600
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INTEGRATION OF CENTERLINE PROGRAM WITH 3-D PLUME PROGRAM

FLOW

BOUNDARY  |——m

CONDITIONS

CHANNEL BANK COORDINATES

l

CENTERLINE PROGRAM

L

2-D CURVILINEAR GRID

L CHANNEL

3-D PLUME PROGRAM —— BOTTOM

l CONTOURS

THERMO/HYDRODYNAMIC
SOLUTION
ORIGHIAL po = |

latate)

OF PCon CUaLr Y,

¢

\ld\ |

(



} NON-UNIFORM BOTTOM CONSIDERATIONS OF CUMBERLAND RIVER SEGMENT

® BOTTOM PROFILES BASED ON SOUNDINGS
s LONGITUDINAL AND TRANSVERSE VARIATIONS ACCEPTED
¢ GRID SPACING LIMITS RESOLUTION OF BOTTOM SHAPE

e BOTTOM PROFILES NOT USED FOR TRANSFORMATION

c
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VELOCITY VECTOR PLOT FOR CUMBERLAND RIVER SEGMENT

NOTE: VELOCITIES LESS THAN 1.5 cm/sec
ARE SHOWN AS A DOT

DISCHARGE ##
CHANNEL

10_Cu/ste

500
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INTEGRATION OF CENTERLINE PROGRAM WITH 2-D PLUME AND TRACK PROGRAMS

CHANNEL BANK COQRDINATES

l

CENTERLINE PROGRAM

'

2-D CURVILINEAR GRID

FLOW
BOUNDARY
CONDITIONS

'

2-D PLUME PROGRAM

'

CHANNEL
BOTTOM
CONTOURS

HYDRODYNAMIC SOLUTION

PARTICLE
INITIAL
POSITION

'

TRACK PROGRAM

l

PARTICLE TRAJECTORY
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CENTERLINE SUMMARY
APPLICABLE TO SINUOUS RIVER CHANNELS
CURRENTLY OPERATIONAL

DIGITIZATION OF CHANNEL COORDINATES

CONSTANT/VARIABLE CHANNEL WIDTH OPTIONS

e
e  UNIFORM/NON-UNIFORM GRID OPTIONS
PRESENTLY COUPLED WITH 2-D AND 3-D HYDRODYNAMIC

o
MODELS

503



"

it

)



35

“N81-14725

GRID GENERATION FOR

TWO-DIMENSIONAL FINITE
ELEMENT FLOWFIELD
COMPUTATION

KENNETH E. TATUM
MCDONNELL AIRCRAFT COMPANY
MCDONNELL DOUGLAS CORPORATION
ST. LOUIS, MISSOURI
and lower surfaces handled independently
to allow sharp leading edges. The method
will generate meshes of triangular or
quadrilateral elements. Thus, with certain
additional constraints of smoothness and
near-orthogonality, a quadrilateral mesh
could be generated for a finite volume type
method. Finally, solutions obtained by the
MCAIR finite element full potential tiow

To facilitate development of the finite
program on sample meshes are shown to

element method for fluild dynamics

problems a 2-D mesh generation scheme

has been developed with the emphasis on
versatility and Independence of the finlte
element solution algorithm to be employed.
No effort has been expended to maintain

grid line orthogonality since the finite

element method has no such requirement.

illustrate their usefulness.

The method consists of sequences of
shearings and conformal maps with upper

Preceding page blank

(
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TYPICAL ANALYTIC TRANSFORMATION
PARABOLIC PLUS SHEARING

The parabollc tranformation shown Is a
typical method used to generate body fitted
coordinate meshes for 2-D flowfield computa-
tions. Precise transformation Jacobians must
be defined relating the uniform cartesian
computational grid to the physical body-
conforming coordinate grid. Computations
are performed by Finite Difference Methods
(FDM) in the cartesian coordinate space with
determinants of the Jacoblans appearing as
added coefficlents in the difference equa-

tions. Simple analytic transformations, even
if multiple, cause little increase in complexity
of the equations. However for complex body
shapes numeric transformation techniques
must be employed requiring Jacobian
matrices to be computed for each grid cell.
These matrices, often approximated, must be
stored within the computer or recomputed for
successive iterations of nonlinear systems.
Either technique is costly.

f=in '{[x = Xpl2) +iy —iy,(2l] /t(z)}‘ﬁ

{=z
Y
/- SINGULAR LINE (x,, v, 2) BRANCH cur-\
B e X
{x,v,2) c

{t£.0.%5)

AND THE SHEARING TRANSFORMATION

X=t

Y =75 —8(,§)

/—n=S(E,§')
A

SINGULAR LINE

Z=¢

Figure 1
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POSSIBLE FINITE ELEMENT MESH
TRIANGULATION ON UNIT SQUARE

- McDonnell Aircraft Company (MCAIR) is

studying the Finite Element Method (FEM) as
‘a method which might eliminate, or

drastically reduce, the cost assoclated with
transformation Jacoblans. The FEM Is equally
suited to uniform cartesian meshes or
irregular, highly non-orthogonal meshes. Two
distinctly ditferent FEM meshes (triangula-
tions) of the unit square are shown in Figure

AN
LN

36 NODES
50 ELEMENTS

2. Each mesh contains 36 nodes and are
equally usable even though a specitic
problem may indicate the desirability of one
over the other. Computations may thus be
performed directly in physical space on
body-fitted grids generated independently
of orthogonality constraints. Only the
physical nodal coordinates and the relation-
ships of nodes to elements must be stored.

36 NODES
48 ELEMENTS

Figure 2
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COMPLEX SINE CONFORMAL MAPPING

Grid generation for a FEM computation
may be performed by many means. While
conformal mappings of simple, highly regular
grids are not necessary from the standpoint
of maintaining orthogonality, they are useful
in producing grids with simple relationships
between nodes and elements. Accordingly
the current MCAIR technique is based on a
conformal (sine) mapping of a rectangular

region to a semi-oval region. A sequenct
of shearing and stretching transformations
both prior to and subsequent to the
conformal mapping, shape line E'F'A’ ¢
that of one surface of the airfoil, either uppe,
or lower. The number of, or localization of, the
shearings is entirely unimportant as fong as
they may be programmed easily.

}
C
D B BcD
y=k
E A
« — X
~7/2 F n/2
W =5sin (2)
Z=x+iy
W=u+iv
BCD’

(

u 2 v )2
+f ——
osh k sinh k
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MATCHING OF UPPER AND
LOWER MESH REGIONS

-~ The general method described by Figure 3

is used twice to form two mesh regions as
shown in Figure 4, one about the upper
surface and one about the lower surface. The
alrfoll Is situated with the forward-most and
aft-most points aty = 0, x = +1and the two
regions are designed to match along the line

y =0, | x | > 1. Points along the line AC are
doubly speciftied thus creating a cut across
which wakelcirculation boundary conditions
may be applied. Points along the matching
line BD are merged and no boundary is
considered there in the final mesh,

509



TRIANGULATION OF FIELD BY DIVIDING
QUADRILATERALS ALONG APPROPRIATE DIAGONAL

The actual computation of nodal
coordinates has been automated in a Fortran
computer code for an arbitrary airfoil elther
specified analytically or by discrete points.
Program inputs allow the exact specification
of the desired mesh spacing along the body
surface as well as the relative spacings
normal to the surface. The final tield is
triangulated as shown in Figure 5 by dividing
quadrilaterals along a diagonal, with the

diagonal direction varying between regions of
the mesh in such a way as to prevent the
conformal map from collapsing a triangie to
zero area. Triangular elements are desired
only because of the simplicity of finite
element integration over such regions.
However, if desired, Quadrilateral elements
are obviously generated quite as readily by
the scheme.

DASHED LINES = DIAGONAL

S

Figure 5

510

L

C



16.3% NLR 7301 AIRFOIL
72 x 17 MESH

17 rows of elements extending outward from
A total of 1314 nodes define

the surface.
Neither the bluntness

"= . Figure 6 shows a final resultant mesh
generated about a modern supercritical
airfoil, the 16.3% thick NLR 7301 airfoil, the 2448 elements.
with the coordinate system scaled by the of the leading edge region nor the reverse
The mesh consists of 72 curvature of the aft lower surface create
any difficulties for the method.

airtoil chord.
“elements bounding the airfoll surface with

0.60 \
\
0.40 +
= 0.20 + ZZZoSs
=
N’
Y/C 02—
—0.20 4+ 2 N
-0.40 £
—0.60 £ » o UATETRVATANVA )
0.40 -0'20 0 0.207 0.40 0.607 0.80 1.00 120 140

0.60 —
X/C

Figure 6
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6% SYMMETRIC BICONVEX AIRFOIL

72 x 17 MESH

Figure 7 shows a sample mesh about an
airfoil with opposite extremes to that of
Figure 6. The airfoil is a thin (6%) symmetric
Biconvex section with sharp leading and
trailing edges. The sharpness of the leading
edge presents no difficulties for the method
due to the independent handling of upper and

0.60

0.40 +

0.20

Y/C 01+——=
-0.20 -

-0.40+

~0.604-X" 4L/
-0.60 —0.40 -0.20 ©

lower surtaces. No singular point (xg, yo), as
needed for example by the parabolic transfor-
mation illustrated in Figure 1 , exists for this
type of leading edge. Thus, any solution
procedure depending on a singularity point
unwrapping transformation will fail on this
airfoil,

0.20 040 060 0.80 1.00 120 1.40

Xx/c

Figure 7
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6% SYMMETRIC BICONVEX AIRFOIL
LEADING EDGE

Figure 8 is an enlargement of the leading
edge region of the mesh in Figure 7. Some
local stretchings of the mesh have been
automatically performed by the computer
code to prevent some elements from becom-
ing too small or thin. The stretchings may
distort the smooth variation of elements
around the leading edge but in reality
increase the potential for obtaining an
accurate finite element solution on the mesh

0.12

0.08 -

/7]
/]

o

0.04

<L

<7

<A

AN

"’
R

1>

<]
AN

5

</

o
.

L

{ >
S

/
1

<1

Y/C 0

—0.04 -

W

—0.08 +

()1

X1 . 7

—0.12 A

AN
TN
SO

’Ab—
AT
s

<2

=~

(Y

<N
N7

<

D
RO
NS

>

o

SE7
oY%

A
i

2

&

<

N
S

P

%

2

/K

-0.20 —0.16 -0.12 -0.08 —-0.04

=

due to the maintaining of smaller aspect
ratios (maximum/minimum dimension of
triangle) of individual elements. Another
constraint on the elements necessitating
some local stretching is that the magnitude
of the area of the smallest element not be too
small relative to significant digit resolution of
the computer on which calculations are to be
performed.

5 x“é“

5 - < AW

%
%
L)

%
/]
/]
/]

&

Q) NNNN
AESSSN
VSN NAY,

X/C

0.16 0.20

Figure 8
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SUPERSONIC FIGHTER AIRFOIL (20° AND 10° FLAPS)
72 x 17 MESH

The use of shearing transformations not
restricted to maintaining orthogonality of the
grid allows the creation of grids about sharp
corners. Figure 9 shows a grid about a
supersonic fighter airfoil section with both
leading and trailing edge tlaps detlected. The
discontinuous surface slopes at the hinge
lines might create numerical singularities in

0.60 -
0.40 1
0.20 -

y/C 0-

—0.20 4

-0.40

—0.60 4
~0.60 —0.40 —0.20 o

methods which attempt to maintain
orthogonal grids. The MCAIR technique
however has no such ditficulties. The com-
puter program also allows element spacings
to be user specified to facilitate bunching of
elements around the flap hinges where high
velocity gradients are to be expected in the
FEM solution,

Y
N
N

0.20 040 060 080 1.00 120 1.40
Xx/c

Figure 9
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NLR SYMMETRIC SHOCK-FREE AIRFOIL
36 x 17 MESH

Figure 10 is an example of a halt-plane
mesh about a symmetric NLR shock-free
airfoil design. The Independent handling of
upper and lower airfoll surfaces allows this
type of mesh to be generated very simply.
Flow solutions about symmetric airfoils at
zero angle-of-attack may thus be obtained at
half the expense or with double the nodal
density but no additional cost. Such

1.20 T
1.00 ¢

0.80 1

Y/C 0.60

0.40 4

0.20 ¢

0 t
-0.60 -0.40 —-0.20 0

solutions are important in fundamental
research and also for comparison of full
potential flow solutions with small
perturbation solutions. These small
perturbation solutions are most strictly valid
at small, or zero, angle-of-attack on thin or
sharp nosed airfolls such as the biconvex
section shown in Figure 7.

o "
0.20 0.40 0.60 080 1.00 120 140
X/C

Figure 10
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16.3% NLR 7301 AIRFOIL

ALPHA =0.391°

Figures 171-13 illustrate the use of the
meshes shown in previous figures by the
current MCAIR FEM full potential flow pro-
gram. Figure 11 compares a FEM solution at a
moderate subsonic Mach number (0.5) and

MCAIR FEM

—14

CP

1 i T

MACH 0.502

small angle-of-attack to the solution by a
modern state-of-the-art Finite Difference
Method (FDM) program. The comparison is
good even though the FDM grid was much
denser than the FEM mesh.

JAMESON FL036 FDM

[ — 1
0 20 40 60 80 100
X/C PERCENT
. o 13
AL DA
Figure 11 ORIGINAL T
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' SUPERSONIC FIGHTER AIRFOIL (20° AND 10° FLAPS)
ALPHA = 1.0° MACH0.5

comparison. A Karman-Tsien compressibility
correction was applied to obtain a Mach 0.5
solution. Agreement is good even in regions
of pressure spikes; however, the inexpensive
panel method employed approximately
double the panel (solution node) density of
the FEM and was able to more accurately
resolve the pressure peaks.

Figure 12 compares solutions for the
supersonic tighter airfoil with 20° leading
" edge and 10° trailing edge flaps. Since no
finite difference program was available which
would compute flows about sharp leading
edges and abrupt hinge lines, a modern
technology Panel Method program, the
Bristow Multielement Airfoil Analysis and
Design (MAAD) program, was employed for

/ ——

—_ ——cpr — — — —

Il

(¢
|

T

MCAIR FEM
CL = 1.046

BRISTOW PANEL
METHOD +
KARMAN/TSIEN

1
0 20 40 60 80 100
X/C PERCENT

Figure 12

C
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NLR SYMMETRIC AIRFOIL

ALPHA =0°

Figure 13 illustrates the use of a half-plane
mesh, specifically that shown in Figure 9.
The solution was obtained in the fundamental
research on adapting the FEM to non-
subsonic flowfields where the governing
differential equations are of mixed
elliptic/hyperbolic type. Using the artificial
density concept of Holst the MCAIR FEM was

—1-

cp

NLR
HODOGRAPH
SOLUTION

MACH 0.786

able to produce this solution on a shock-free
airfoil which agrees reasonably well with the
theoretical hodograph solution. The versa-
tility of the mesh generator, both in technique
and program, greatly facilitates the FEM
research into fundamental computational
methods and in applied fluid mechanics.

MCAIR FEM

I ! L
60 -80 100

X/C PERCENT

Figure 13
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Numerical Ceneration of Two-Dimensional Orthogonal
Curvilinear Coordinates in an Euclidean Space”™

Z. U. A. Warsi and J. F. Thompson
Department of Aerospace Engineering

Mississippi State University

Mississippi State, MS 39762
generation

Abstract
r regions between

In this paper a non-iterative method for the numerical
The basic

of orthogonal curvilinear coordinates for plane annula
tion for an Euclidean space

two arbitrary smooth closed curves has been developed.
The method has been applied in

The method can

generating equation is the Gaussian equa
es and these test results demonstrate that the proposed method
g the solution

which has been solved analytically.

can be readily applied to a wide variety of problems.

many cas
also be used for simply connected regions only by obtainin
of the linear equation (19) under the changed boundary conditions.
per are available in Reference [1].

Details on the work reported in this pa

80-0185.
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Fundamental Ideas of the Method

All methods of numerical coordinate generation in a two-dimensional

plane and classified under the method of "elliptic equations" (Refs.
{2]1-[10]), have depended invariably on the solution of Poisson equations

for the curvilinear coordinates £(x,y) and n(x,y):

1 1 1 1
2 = ~ = -
Ve =~ g (811Ton ~ 281, ) + 8y, )
g
22
= - =" PN (1a)
V2n = - = (g T2 - 2g. T2 + g, T2)
g 81175 12712 F 80T
g
1
= -t Q) (1b)

where P(Z,n), Q(&,n) are arbitrarily specified control functions, the 8 j
are the fundamental metric coefficients, the F;k are the Christoffel

symbols of the second kind

i g,
ij = g "[ik,2] (2)
g, g dg .
. 1 ) 2
36,81 = 5 (=2 + K ik,
9x 3XJ Bx

and
= - 2
8 = 8178y, ~ (g;,)
Implicitly equation (1) implies two things: (i) that the coordinates

for the same domain can also be obtained by solving the Laplace equations

C
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and (ii) since the F?k have first partial derivatives of 8y in them,
equation (1) can also be interpreted as providing a set of constraints
or relations among the gi, and their first partial derivatives.

In this paper we present another method based on elliptic

equations and state the problem as followé.
The three functions gll’ g12’ g22 of the curvilinear coordinates

£,n define an element of length ds in a plane if the Gaussian

with zero curvature
(4)

equation
/g T2
S P

(o T2
Vg Pll B (

holds for every point in the plane, and then the Cartesian coordinates

are given as
%i,; x = x(&,n), vy = y(&,n)
Equation (4) is identically satisfied by a function a(f,n) defined as
_;@FZ a=ﬁr2
' 'n gy 12

a-—
& g5 1

Specifically, o is the angle of inclination with respect to the x-axis
directed in the sense

= const.

of the tangent to the coordinate line n
The first partial derivatives

of increasing values of the parameter £.

of x and y are

Xg 1
cos a + Vg sin a), Vo = g (Vg cos a - 812 sin a)}(5)
g
11

&

521



Then

811
y =-f[Vgll sin a d§ e (Vg cos a - 8,5 sin a)dn]
811
- [ B (g2 2
a=-f (r, dg + 12, dn) (6)

811

The inverse relations of (5) are

£ = (Vg cos a - 812 sin a)/»’ggll

X

3 =—(g12 cos o + Vg sin a)/Vggll

y
n, = Vgll/g sin a
n, = gll/g cos a (7

For the case of orthogonal coordinates, the coefficient
gl2 =0, i.e.,
8o = xgxn + ygyn =0 (8)

which is satisfied by the equations

M
i

= —FyE

n Fxg 9)

y

where F > 0 is a continuous function of 811 and B0 [11]
Referring to Figure 1, let the boundary F2 of a bounded region
in an Euclidean two-dimensional space be a simple curve x = x (&),

y =y (8), with a uniformaly turning tangent. In the region 2, let

522
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Qs be an annular subregion bounded by the inner boundary Fl and the
outer boundary Fz. The region QS is to be mapped onto a rectangular

reglon R in the &n-plane by a transformation so as to have

x(&,n)
ng <m<nm
y(&,n)

X

@0

y

where nB and n_are the actual parametric values associated with the
[e o]
boundaries Fl and FZ’ respectively, and x,y are periodic in the Z-argument.

Substituting 819 = 0 in the fundamental equation (4) we get

g
o [;g—ll—l st (F2g )] + 2 [ﬁ 51 = 0 (10)
where
822 = F'8;
g = (Fg,)? } (11) ~
Before we solve the problem of orthogonal coordinate generation
based on the elliptic equation (10), we digress and state the following
results: Following Potter and Tuttle [ 6] we assumé that the £-curves
in the physical xy-plane are free from sources and sinks. This
condition establishes a unique correspondence between the E-points on
each pair of n= const. lines. In the absence of sources and sinks,
we have
divgrad y(n)] = 0 (12)
where P(n) is an arbitrary differentiable function of n and grad y(n)
is oriented along the normal to the curve n = const. Carrying out the
differential operation in (12) and using the expressions
|grad n| = 1//§;g O
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in (12), we obtain
d2| du
__EfJﬂ

0 e V=
an (0 Y8y1/895)= 2 1

1/v(n) and denoting the arbitrary function of & due to

Writing %% =

integration by &nu(g), we obtain the result

J =
8117897 u(g)v(n)

= 1/F (13)
This result shows that for the case of orthogonal coordinates the

/g22 is a product of the positive functions p(£) and v(n).

ratio g,
The result in (13) also provides the condition for the two distinct

families of orthogonal curves
£ =
to divide the physical plane in infinitensimal squares.

We now introduce new coordinates £'(£) and n'(n) as

e = Judg, n' = [ 5oy

Thus
8iq = 811/v%s 8h = BV
so that
837 = 811
Defining
P' = in g

"

const., n = const.
(See Cohen [12]).

(14)
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it can be shown that

1 %81
Fgyp @m

3 .2 o
38 (Figp )l + 50 1

2pt 2py
%' %' _ v(n) 2l 1
3€v2 anvz u(e) g Fgll
Using (15) in (10), we get a much simpler equation

2p1 2p1
82p" | 3%P'
3£12 anlz

=0

Another important result can be obtained based on (13).

the orthogonality condition 817 = 0 in (7), we have

T}y = gX/F’ nX = - gy/F

so that
o /B + 2 (€ /P =0
9 "7x oy Ey
Carrying out the transformation (14) in (17), we get

v2g' = 0

(15)

(16)

Using

(17)

(18)

Equation (18) provides the uniqueness condition for the solution of

equation (16).

Based on the preceeding analysis we can state that if an exact

analytic solution of equation (10) can be obtained for F = 1

, i.e.,

8yp = gll’ then the solution for any other coordinate system ¢ and E}

where £ = ¢ (E) and n = f(;D,can simply be obtained by the substitution

of ¢ and f in place £ and n respectively. With this scheme in mind,

we solve the equation

2 2
8% , 3% _
g2 9n?

where

(19
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822 7 Bnn
(20)

m”
}
d
]
>
o}
[4)0]
|,—-I
}—l

¢

under the boundary conditions
P = PB(E) at n = ot

0 <& <2n (21)

=7

oo

=P _(£) at n

where the subscripts B and = denote the inner and outer boundaries,

The periodicity requirement is that
(22)

respectively.
P(g,n) = P(&+2m,n)

Further, the £-coordinate must be such that the equation
(23)

Vg = 0

is always satisfied.
A general analytic solution of equation (19) under the boundary
conditions (21) and the periodicity condition (22) is

a + ﬁﬁ'+ pol sinh n(n_-n)
o n=1 ®

P(E,n) =
(a_ cos nf + bn sin ng)/sinh nn_
t I sinh nn(c cos ng + d, sin ng)/sinh nn  (24)
where
K = (co—ao)/nco (25)
and . . om
a =§1; J Pa(E)dE, ¢ = oo [, Pa(®)de

tThere is no loss of generality in setting the parametric value ng = 0
The value n, must be interpreted as the difference between the actual

[+ ¢]
values of n at the ouvter and inner boundaries.
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27 , o
2T _ 1 P,(&) sin ng dt (26)
a =L Pgle) cosngdg, b =— [ ¥g
n w-o
1 2m 1 2w
c == fo P,(8) cos nt dg, d_ == jo P_(¢) sin ng dg
For orthogonal Coordinates
L1 %8 1 %8y
= — -“, 2 e e e
3 2/g on n 2/g g
therefore for 8y, = gll
-1k o _ _13p
ag 2 3an* n 2 9g
and consequently
- cosh n(nw—n)
aE,n) = a(,0) + §=l 7 sinh w7 (bn cos ng - a_ sin n&)
+ 5 cosh nn ( in nf - d £) S
fi=l 2 sinh n n_ ‘°p S0 0 n €08 1 L
- cosh nn_
T fi=l 7 sinh v, (Pp €08 & - &, sin n)
-5 1 (c. sin nf - d cos ng)
n=1 2 sinh n n, n n
Having determined 811 and a, we can find the Cartesian coordinates
x(g,n) = x(£,0) + [ Vg, sin o dn
y(€,n) = y(g,0) + [7 Vg, cos a dn (28)
The preceding solution is for the case when 8yy = gll’ i.e.,
F = 1. However, as stated earlier, the solution for any other coordinate
systemig,; in which géz # Eil can be obtained by replacing £ and n
in (24), (27) and (28) by ¢(E) and £(n), respectively. This feature can w7
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be used to redistribute the coordinate lines in the desired regions.

Further, since the Fourier coefficients

C

Since the functions ¢ and f are at our disposal, they play the same role

as P and Q in equation (1).
(26) are invariant to a coordinate transformation £ = ¢(E), where
‘m

0, ¢(E$) = 21 and E; corresponds to & = 0, § corresponds to

$(E) =
g = 2mw, these coefficients need not be recalculated.
The procedure of transformation from &,n to.g;; is as follows.

On transformation from (£,n) to (E;E), the covariant metric

9x  9X

coefficients transform through the equation
. k . 2
" B IX X
0, we have

so that,on using the relations 89 = 811 and 81

2 2
135+ gy,
3t

(29)

= | g. i
i1
af
_ 3 2 3 2
By, = (D + D gy,
on an
We now introduce the transformation
£ = ¢(£)
n = £(n) (30)

—=E,

where the functions ¢ and f are continuously differentiable and satisfy

$(£) = 0, £(n) = 0
0 corresponds to n 8

where £ = 0 corresponds to E'= £

A:%,e=
dg

o e
:sl'm

Defining
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we obtain from (30) %%i;

_ _ g2 — .
gzz(g,ﬂ) = )\_2— gll(i,ﬂ)
Comparing with (13), we find p = A, v =-% . (31)

The salient feature of the preceding analysis is that the solution
for the case 8yp = gy can be used to obtain the solution for the case

8y) # gll by coordinate transformation.

Before solving any specific problem, it is important first to
establish an orthogonal correspondence between unique points of the
inner and outer boundary curves. This condition is satisfied if we
choose the £~curves satisfying the equation
Ve =0 (32) wF
The inner and outer boundary curves are available either in tabular
or functional form as

Yg = y(xB), Ve = ¥(x) (33)

For equation (32) to be satisfied, we can take £ as the angle traced
out in a clockwise sense by the common radius of the concentric circles
in a conformal representation of the inner and outer boundary curves.
If a and A, respectively, are the radii of the inner and outer circles

in the transformed conformal plane, then

- L
27

oY)
1

Jo7 lxg(8) cos £ -y (5) sin elde

27

>
[l
|
—

[x,(E) cos £ - y_(£) sin £]dg (34)

(s}
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As is well known, the preceding scheme is an iterative numerical scheme,
In lieu of this, we have developed a method which is fast and direct,
and is equivalent to satisfying equation (32).

We circumscribe circles around the inner and outer boundary curves.
Two cases arise depending on whether the circles are concentric or

nonconcentric.

Case I: If the circumscribed circles are concentric (Fig. 2(a)), then we

select those values of the ordinates which correspond to the abscissae

XB =T cos £, x_ = r cos & (35)

where rS and rL are the radii of the circumscribed circles in the

physical plane.

Case II: If the circumscribed circles are nonconcentric (Fig. 2(b)),

then we first use the formula for the conformal transformation of non-
concentric to concentric circles, Kober [13], and choose the ordinates
corresponding to abscissae given by the formula

x(g) = [(1L - cy cos &) {XL(l - ¢y cos &) + Yy, sin &
+ rL(c cos ¢y - y cos(E-9))}
~ ¢y sin E{yL(l -~ ¢y cos &) - YRy sin &
- rL(c sin ¢ + v sin(&-y))}]
/(1 - 2¢cy cos &£ + czyz) (36)

where

Y rs = radii of outer and inner circumscribed circles

L’

(XL,YL) and (Xs,ys) = coordinates of the centers
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(a) Concentric circumscribed circles Cy
and Cy of radii rg and rp, respectively,

with center at the origin.

(b) Nonconcentric circumscribed circles Cy
and Co of radii s and ry, and centers
at zg and Z1,, respectively.

Figure 2.- Circumscribed circles.

(

il
1

¢



gl

2 _ Y Y
d (xs xL) + (ys YL)

ys—yL

X =X
S

)

p =7 - tan—1(
L

- 2 2 _ .2 2 2 2y2 _ aq2p231/2
c [(d* + ro rs) + {(d¢ + rp rs) 4d rr} ]/2rLd

y = 1 for the outer boundary
r
Y = ;LYQ%EI for the inner boundary
8
t =cr

Having determined the appropriate sets (XB(E), ys(g)) and
(xm(g), ym(g)), we use (34) to obtain the values of a and A. The
parametric differencen_is connected in some manner with the "modulus"
of the domain which, however, by itself is a separate problem (see
Burbea [14] and Gaier [15]). Inm this work we have defined n_ based

on the knowledge of a and A as discussed above by the formula

N, = (37

For Figures 3 to 8, we have uged the following functional forms

of ¢ and f:
o 2n(E-E)
0 (2) = 2

EIII—EO

Ne(n=ng) g(NNg)

£(n) = ——
Mo Mg & (n,mng)
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sc that
A= _2“_
gl'l'l_gO
n. L K(n—nB)
6 =——— [1 + (n=ng) an K] =———
NN (n,-n,)
8 g =8

where K > 1 igs an arbitrary constant, and E'= Eg, ﬁ-= n, correspond,
respectively, to £ = 27 and n=mn_. We treat'g and ;-as integers so
that E; =1, Eﬁ = IMAX,'HE = 1, and E; = JMAX. Since n, is known
from (37), hence by specifying the numerical values to K and JMAX
we can create the desired mesh control in the direction of n. The
value of K between 1.05 and 1.1 is quite sufficient [16] to have a
fine grid near the inner boundary.

The number of terms to be retained in the series (24) is usually
small for convex inner and outer boundaries, though we have retained
(IMAX-1)/2 number of coefficients in each computation. This number
is the optimum number of terms in a discrete Fourier series [17]
having IMAX number of points in one period.

Figure 3 shows the classic case of confocal ellipses with coordinate
contraction in n. The value of K is 1.05. The orthogonal correspondence

between g-points of the inner and outer boundary has been established

by using Case I, Eq. (35).
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Figure 3.- Confocal ellipses. Semimajor axes 1.48, 5.0,
and semiminor axes 0.5, 4.802, respectively. Only
Const. lines shown for detail.

38 n =
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Figure 4 presents orthogonal coordinates for a blunt body with elliptical %ijé

outer boundary. Here K = 1.0l. For orthogonal correspondence between Z-points,

Eq. (35) has been used.

1
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: 7 A4
G .//
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Figure 4.- A blunt body section with elliptical outer boundary.
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For orthogonal correspondence between £-points

Orthogonal coordinates for nonconcentric circles are presented in
(36) has been used. Data shown on

1.01.

Figure 5. Here K
between the inner and outer boundary, Eq

the figure.

= 2.5,

Figure 5.- Nonconcentric circles: rg =1, rp
zg = (0,0), zy = (1,0).
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trailing edge are shown in Figure 6.
Here K 1.02.

correspondence.

Eq.

(35) is used for orthogonal

Orthogonal coordinates for a Joukowsky's airfoil with slightly rounded

C
i

538

slightly

Figure 6.- Joukowsky's airfoil with
rounded trailing edge.



Figure 7 presents orthogonal coordinates for nonconcentric ellipses.

Centers of the inner and outer ellipses are at (0,0) and (1,0), respectively.

Here K = 1.01. For orthogonal correspondence Eq. (36) has been used.

(W!
!

in

Size data same as
zg = (0,0), z; = (1,0).

Figure 7.- Nonconcentric ellipses
Figure 3.
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Orthogonal coordinates for am arbitrarily deformed upper part of

Figure 4 are shown in Figure 8. The placement of outer boundary is limited

to avoid intersecting normals (Eiseman [18]). This figure shows that we need

some attraction near those sections of the outer boundary which face the

concave side.

Figure 8.- Generated coordinates for body having convex,
concave and straight portions. Placement of outer
boundary is decided by the radius of the osculating
circles of the concave portions.
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Summary of Numerical Experimentation

In the course of this investigation a number of cases of inner

and outer boundary shapes and orientations have been tested through
The main conclusions are listed below:

the developed computer program.
The method works very effectively for smooth and convex boundaries

(i)
of any shape and orientation.
For concave boundaries a method similar to that of Eiseman has

(i1)
to be used in the placement of the outer boundary to avoid intersecting

normals. Another remedy would be to introduce some type of
attraction near the outer boundary facing the concave side of the

inner boundary.
(iii) Sharp turns and corners are not admissible and have to be rounded

]
!

(

to avoid singularities in the metric data.

C”l
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A BODY-FITTED CONFORMAL MAPPING METHOD
WITH GRID-SPACING CONTROL

J. C. Wu
and
U. Gulcat

Georgia Institue of Technology

It is demonstrated by analyses and by numerical illustrations that any
arbitrarily prescribed contour, open or closed, can be mapped conformally onto a
le,using any arbitrarily prescribed distribution
This flexibility of selecting a scale factor
our is not in violation of the well-known Riemann's
much used Joukowski

simple contour, such as a unit circ
of scale factor of transformation.
for conformal mapping. The
be one of a family of conformal transformations that
it circle. For flow problems, the conformal
arily prescribed

distribution on the cont

complicated contour onto a corresponding
f singular

uniqueness theory

transformation is shown to

map a given airfoil contour onto a un

mapping of a region bounded by a

region bounded by a simple contour is of interest. With an arbitr

scale factor, there exist in general singular points located at finite distances

from the contour. (The case where singularities are located infinitely far from

the contour is an exception.) Numerical methods for generating conformal grids
should therefore incorporate a mechanism that ensures the absence o

terest. In this context, the distribution of scale factor on

rbitrary. The restriction on the scale factor distribution

le freedom in the control of grid spacing on the

the physics of the flow problem can be

points in the region of in
545

the contour cannot be a
is not stringent. There exists amp
in general,

contour so that,
accommodated by a suitably designed conformal grid.
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DESIRED FEATURES OF GRID SYSTEMS

. Be body-fitted,
. Possess control over grid-spacing.

Yield algebraic equations amenable to highly efficient numerical

procedures.
. Require minimal computational efforts to generate.

The first feature listed above is generally accepted as being the key to the
successful computation of flows. The second feature is essential to the
computation of complex flows with diverse length scales in different regions of
the flows. The third feature is critical in situations where the amount of
computation required is very large. The fourth feature is important if repeated
generation of grids is desired during the solution of a given problem. (For
example, in the solution of a time-dependent problem, different grids may be

desired for different time intervals).
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CURVILINEAR COORDINATES AND GRID SYSTEM

Non-orthogonal coordinates yield transformed differential equations
that are substantially more complicated than the original equations.

Orthogonal non-conformal coordinates yield less complicated equations.

Conformal coordinates yield simplest transformed equations.

The requirements that a transformation be conformal and that it
possesses a grid-spacing-control ability are not mutually exclusive.

Conformal mapping can be generated very efficiently.
Orthogonal grids can be easily developed using conformal mapping.

The advantages of using conformal grids are most clearly demonstrated by
the numerical procedures available for the Poisson's equation. Algebraic
equations obtained in conformal grids can be solved using direct methods such as
the block Gaussian elimination, the odd-even reduction, and the Fourier series
methods. The choice of methods is somewhat more limited in an orthogonal non-
conformal grid. With non-orthogonal grids, iterative procedures are generally
required. The main purpose of this paper is to show that any prescribed two-

dimensional body contour can be conformally mapped onto a simple shape, such
as the unit circle, and such mappings do possess a grid-spacing-control ability.

(H
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CONFORMAL MAPPING

y i
&
K C3
G2
' 0 ‘;1 3
Sk
0 X
C-plane
z-plane { =g+in = peié

Any usual contour, open or closed, can be mapped conformally onto a
simple contour, such as a circle or a straight line segment, using any prescribed
distribution of the scale factor of transformation on the contour. This is true for
smooth contours as well as for contours with discontinuous slopes. The unit circle
is used as the canonical contour for the following discussion. A total of K

equally spaced points are assigned on the unit circle, with the point & 8iven
by
Ck - eiznk/K

where K is an odd integer.

The corresponding points, z, » on the original contour are sequenced as shown but

otherwise arbitrarily located.
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THE LAURENT SERIES

it
¢ =pe
izmk X
Ck = exp ( < ) , K an odd integer
N
-1
;£ =% c ¢, N=F5
n
n=-N
N izpkn
z = T C exp { .L.T.L__}
k n K
n==N
N , N N ,
Z z exp{-l—zﬂ?kﬂ}=2 c =z exp{—lﬂ%z—gm}
k==N n=-N " n=-N
- {K m=n
0 m=n
c = L 2 z  exp { 1_23ﬂ<_n}
n K k==N k K
N N .
z = %{— by by Zk exp { ____1221{1’1} gn
n=-N k==N

By analytic continuation, the Fourier coefficients of the Laurent series are
those obtained above. The finite Laurent series therefore can be used to compute
the grid-point locations away from the contour that corresponds to specified grid
points in the ¢ -plane. The above analysis can be carried out for an infinite
Laurent series. The only change Is that the Fourier coefficients are then
expressed as integrals instead of sums. The finite Laurent series represents an
approximation of the infinite Laurent series whose regular part converges inside
a certain circle and whose principal part converges outside another certain
circle. The domain of convergence of the infinite Laurent series is the common
annulus of the two circles. The finite Laurent series produces accurate conformal
grids in this domain of convergence. The conformality of the grids thus generated

is ensured by the analyticity of the Laurent series.
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A CONFORMAL GRID WITH SINGULAR POINTS
NEAR THE CONTOUR

With an arbitrarily prescribed distribution of the scale factor, there exist in
general “"singular points" located at finite-distances from the contour. Therefore,
numerical methods for generating conformal grids should contain provisions that
ensure the absence of singular points in the region of computational interest. In
this context, the distribution of the scale factor on the contour cannot be
arbitrary. In this figure is shown a grid around a symmetric airfoil with singular
points located near the airfoil. This figure is obtained using the finite Laurent
series method. The prescribed points on the airfoil are symmetrically distributed
about the line of Symmetry of the airfoil. The grid lines shown are mapped onto
the radial lines and concentric circles shown on the next figure,
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THE GRID SYSTEM IN THE CIRCLE-PLANE

(1!1‘\\‘:

b ————

domain used here is the domain exterior to the unit circle.
onformally onto the grid lines shown in

The "canonical"
The grid lines shown here are mapped C
planes at all points except the singular points where the mapping
own is orthogonal with equal spacings in the

the airfoil-
ceases to be conformal. The gird sh

angular and the radial directions.
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JOUKOWSKI GRID

This figure shows the grid lines around a 9 % thick symmetric airfoil that is

mapped using the Joukowski transformation

z = ( - 0,05214 + %fg%%%%%iz

With this transformation there is no singular point at a finite distance from the
airfoil. The trailing edge in this transformation is rounded (so as to avoid the
need of the Schwarz-Christoffel procedure, which would have introduced
complications unnecessary at this stage of development). The finite Laurent
series method, with grid points on the airfoil boundary assigned properly,

produces a grid system that is indistinguishable from the one shown.

ORIGIN AT, PA m gy
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A SYMMETRIC BILINEAR GRID

” ' 7 /, - 7 7 -

IS A—AT1 }
20 -‘E B A%
ST CL T AT ) )

The unit circle in the { -plane can be mapped onto a unit circle in the w-
plane through a bilinear transformation of the form

For any assigned value of « , the points on the airfoil boundary that correspond
to uniformly distributed grid points on the unit circle can be located. The finite
Laurent series method then yields a conformal mapping of a region exterior of
the circle in the w-plane onto a region exterior of the airfoil in the z-plane. The
concentric circles and radial lines in the w-plane are mapped onto the grid lines
shown above for the case @ =1/8 . The grid lines are symmetric about the line of

symmetry of the airfoil.
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A NON-SYMMETRIC BILINEAR GRID

VP

Using a complex value for « , the concentric circles and radial lines in the
w-plane are mapped onto non-symmetric grid lines in the airfoil-plane. The
figure above shows grid lines for the case a=41—ti-. The singular points of the grid

system shown here and in the previous figure are sufficiently far from the airfoil

so that the grids are of practical interest.
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A GRID IN USE

This grid has been used in a computation of a flow past a 9 % thick
symmetric airfoil at an angle of attack of 15%. The grid is a bilinear grid with
@ = 16. In this study, the boundary layer region of the flow is computed
separately from the detached region. It is only necessary to generate a grid
covering the computation field and to keep the singular point away from this
computation field.
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INITIAL FLOW PATTERN AROUND AN AIRFOIL

gle of attack of 15° and a Reynolds
oil and the flow away
on the upper

This and the following figures show computed streamlines and vorticity
contours around a 9 % thick airfoil set into motion impulsively and thereafter
mmediately after the motion's

kept moving at a constant velocity with an an
number of 1000. This figure is for the time level i

onset. The vorticity is confined to the boundary of the airf

from the airfoil is potential. Note that the rear stagnation point is

surface of the airfoil.
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FLOW AROUND AN AIRFOIL WITH A SEPARATION BUBBLE

This figure shows the computed streamlines and constant vorticity contours
around the airfoil after the airfoil has advanced 2.9 chord lengths relative to the
freestream. A separation bubble has appeared and grown to its present size. The
vorticity field is still confined to the region near the airfoil as shown. With the
integro-differential approach used here, it is only necessary to perform
computations in the vortical region. Therefore the grid needs only be generated
for the vortical region.
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I — 1
ID GENERATION PROCEDURE
ntrol overn

The recommended procedure for generating a conformal grid with co

OUTLINE OF GR
"Joukowski type" conformal

grid spacing consists of four steps:

The locations of grid points on the physical contour that are mapped onto
equally spaced points on a unit circle through a
The coefficients in a finite Laurent series are computed as described

)
transformation are computed.
(2)
earlier.
(3) A suitable bilinear transformation is introduced.
(4) Grid locations corresponding to concentric circles and radial lines in the
bilinear transformed plane are computed.
L. Sankar) which performs step (D is
1977 and other

A computer program (prepared by N.
available. This program uses an iterative procedure (Bauer et al,
e approximation is utilized to achieve a high degree of
y. The operation count for this step is small.For each given contour,
nce for the

mﬂl |

accurac
if several different grids are to be generated, then step (%) is the only step that

researchers). A splin
needs to be repeated. Steps (1) and (2) need to be performed only o
contour. Step (3) needs to be performed only once for all contours of interest.
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CONCLUDING REMARKS

Body-fitted conformal grids can be generated efficiently using thg

approach described,

Ample freedom exists in the control of grid spacing on any contour so thaf

the physics of the flow can be suitably accomadated.

The work reviewed here represents only the initial stage of development of
a new conformal mapping approach for grid generation. Based on the results
obtained thus far, this approach is a highly promising one for use in computing

complex flow problems.
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